

Instabilities of Internal Wave Beams to study Abyssal mixing in the laboratory?

Thierry Dauxois

Stratified Fluids

• Difference of densities

Ekman 1904

Mercier, Vasseur, Dauxois, *Resurrecting Dead-Water Phenomenon*, Nonlinear Processes in Geophysics **18**, 193-208 (2011).

Two Layers

• 100 m

- in the ocean $\Delta\rho/\rho$ ~1/1000
- if similar velocities in both layers \parallel $\eta_1 \sim 1000 \eta_0$
- 3 cm of internal displacement \implies 30 μ m surface expression

Large amplitude internal waves

South China Sea

MODIS image, courtesy of NASA

Mercier, Mathur, Gostiaux, Gerkema, Magalhaess, Da Silva, Dauxois, Journal of Fluid Mechanics 704, 37 (2012) -Soliton generation by internal tidal beams impinging on a pycnocline : laboratory experiments.

Mercier, Gostiaux, Helfrich, Sommeria, Viboud, Didelle, Ghaemsaidi, Dauxois, Peacock, Geophysical Research Letters (2013) Large-scale, realistic laboratory modeling of M2 internal tide generation at the Luzon Strait.

Atmosphere

Atmosphere

Stars

Tamara Rogers, Arizona University

Linear Stratification

Buoyancy Frequency

Internal Waves

Internal gravity waves play a primary role in geophysical fluids

- Significant contribution to mixing in the ocean (Wunsch & Ferrari '04).
- Redistribution of energy and momentum in the middle atmosphere (Fritts & Alexander '03).
- <u>Mechanisms</u>
 - Generation and propagation are well understood (Garrett & Kunze '07).
 - By contrast, dissipation mechanisms are still debated (Kunze & Llewellyn-Smith '04).
 - Wave-Wave interactions PSI (MacKinnon & Winters '05, Alford et al. '07).
 - Reflection on sloping boundaries (Nash et al. '04, Dauxois & Young '99).
 - Scattering by mesoscale structures (Rainville & Pinkel '06).
 - Scattering by finite amplitude bathymetry (Johnston & Merrifield & Holloway '03;

Peacock, Mercier, Didelle, Viboud, Dauxois '09).

Observed energy spectra resulting from NL waves interactions are poorly understood.

(Garrett & Munk '75, Nazarenko '11)

Basic equations

Incompressible flow
$$\nabla \cdot \boldsymbol{u} = 0,$$
Navier-Stokes Eq.
$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho_{\text{ref}}} \nabla p + b\boldsymbol{e}_z + \nu \nabla^2 \boldsymbol{u}$$
Mass conservation
$$\partial_t b + \boldsymbol{u} \cdot \nabla b + u_z N^2 = 0.$$

$$\sum_{\substack{N(z) = (-g(\partial_z \rho_0)/\rho_{\text{ref}})^{1/2} \\ b = g(\rho_0(z) - p)/\rho_{\text{ref}}}}$$
Restricting to 2D and introducing the streamfunction $\boldsymbol{u} = (\partial_z \psi, 0, -\partial_x \psi)$
one gets
$$\partial_t \nabla^2 \psi + J(\nabla^2 \psi, \psi) = -\partial_x b + \nu \nabla^4 \psi.$$

$$\partial_t b + J(b, \psi) - N^2 \partial_x \psi = 0.$$
Where $J(\psi, b) = \partial_x \psi \partial_z b - \partial_x b \partial_z \psi$

$$\sum_{\substack{i=0, i=0, i=0, i=0}} J(\psi, \psi) = -\partial_x b + \nu \nabla^4 \psi.$$

$$\partial_t b + J(b, \psi) - N^2 \partial_x \psi = 0.$$
Where $J(\psi, b) = \partial_x \psi \partial_z b - \partial_x b \partial_z \psi$

$$\sum_{\substack{i=0, i=0, i=0, i=0}} J(\psi, \psi) = -\partial_x b + \partial_x J(b, \psi)$$
Nonlinear terms
$$\sum_{\substack{i=0, i=0, i=0, i=0, i=0, i=0}} V_{\text{iscosity}} + \partial_t J(\psi, \nabla^2 \psi) + \partial_x J(b, \psi)$$

Unusual wave equation: Linear Approximation

$$\nabla^2 \psi_{tt} + N^2 \psi_{xx} = 0$$
 Different from the D'Alembert's equation

Plane wave solution

$$\psi = \psi_0 e^{i(\boldsymbol{k}\cdot\boldsymbol{r}-\omega t)} \longrightarrow \omega = \pm N \frac{\ell}{k} = \pm N \sin \theta_{i}$$

with $oldsymbol{k}=(\ell,0,m)$ and $oldsymbol{k}=|oldsymbol{k}|=(\ell^2+m^2)^{1/2}$

$$\partial_t b = N^2 \partial_x \psi \longrightarrow b = -\left(N^2 \ell / \psi\right) \psi^k \equiv \mathcal{P} \psi$$

Internal Wave Beams

Usual pedagogical introduction to internal waves: The Saint Andrew's cross

Internal waves emitted by oscillating a cylinder

Ð

E. Ermanyuk

- Anisotropic propagation due to the vertical straufication.
- Dispersion relation features the angle of propagation rather than the wavelength.

Unusual wave equation: Nonlinear

$$\nabla^2 \psi_{tt} + N^2 \psi_{xx} = \partial_t J(\psi, \nabla^2 \psi) + \partial_x J(b, \psi)$$

Plane wave solutionwith $k = (\ell, 0, m)$ and $k = |k| = (\ell^2 + m^2)^{1/2}$ $\psi = \psi_0 e^{i(k \cdot r - \omega t)}$ $\longrightarrow J(\psi, -k^2 \psi) = 0$

$$b = -(N^2 \ell/\omega) \psi \equiv \mathcal{P} \psi \longrightarrow_{J(\psi, \mathcal{P} \psi) = 0} J(\psi, b) = 0$$

 $\partial_{tt} \nabla^2 \psi + N^2 \partial_{xx} \psi = \partial_t J(\psi, \nabla^2 \psi) + \partial_x J(b, \psi) = 0$

Plane waves are solutions of the nonlinear equation: even for large amplitude

Internal Wave Beams

McEwan (1973), Tabaei, Akylas & Lamb (2005)

$$\begin{aligned} \mathbf{u} &= u(\eta)(\cos\theta, 0, -\sin\theta)e^{-i\omega t} + c.c\\ b &= -i(\mathcal{P}/k)u(\eta)e^{-i\omega t} + c.c. \end{aligned}$$

with an arbitrary complex amplitude $u(\eta)$

 \boldsymbol{u} and \boldsymbol{b} do not depend on the longitudinal variable $\boldsymbol{\xi} \longrightarrow J(\psi, b) = \partial_{\boldsymbol{\xi}} \psi \, \partial_{\eta} b - \partial_{\boldsymbol{\xi}} b \, \partial_{\eta} \psi = 0$ $J(\psi, \nabla^2 \psi) = 0$

$$\frac{\partial_{tt} \nabla^2 \psi + N^2 \partial_{xx} \psi}{\partial_t J(\psi, \nabla^2 \psi) + \partial_x J(b, \psi)} = 0$$

A uniform (along ξ) beam, regardless of its profile (along η), is an exact NL solution.

- Prolongations: Nonlinear terms cancel out when considering
 - Reflection of Internal Waves: Dauxois & Young, JFM (1999)
 - Modulated Nonlinear Beams: Tabaei & Akylas, JFM (2003)
- <u>Consequences:</u>
 - Nonlinearity has only relative weak consequences...at first sight.
 - Applicability of linear results to field observations, lab. expts or numerical simulations.

Tidal flow over topography

Experiments

Gostiaux & Dauxois, PoF 2007

Numerical Simulations

Maugé & Gerkema, NPG 2008

Fields observations

Holbrok & Fer, GRL 2005

Lien & Gregg, JGR 2001

Peacock, Echeverri & Balmforth, JPO 2008

Lamb, GRL 2004

Experimental Internal Wave Beams

-Gostiaux, Didelle, Mercier, Dauxois *Exp. in Fluids* (2007) -Mercier, Mathur, Gostiaux, Martinand, Peacock, Dauxois *JFM* (2010)

Résumé

- <u>State:</u>
 - Internal wave beams are solutions of the Nonlinear equations
 - Identifying a solution does not mean that it is a stable one!
- Objective of this talk:
 - Present recent progress on NL destabilization of *internal wave beams*
 - Bridging part of the gap between our understanding of their
 - Generation mechanisms based mostly on <u>linear</u> analysis,
 - subsequent evolution through <u>nonlinear</u> effects.
 - Studying Abyssal mixing in the lab. with internal wave beams.
- Dauxois, Joubaud, Odier, Venaille, Annual Review of Fluid Mechanics 2018

Stability of Internal Waves

Linear Internal Waves

Time-frequency Analysis

Sample Experiment

Theory of this triadic instability

McEwan & Plumb, DAO 2, 83 (1977).

Koudella & Staquet JFM 548, 165 (2006). Bourget, Dauxois, Joubaud, Odier, JFM 723, 1 (2013).

$$\partial_t \nabla^2 \psi + J(\nabla^2 \psi, \psi) = -\partial_x b + \nu \nabla^4 \psi.$$

$$\partial_t b + J(b, \psi) - N^2 \partial_x \psi = 0.$$

Seeking solutions of the form

$$b = \sum_{j} R_{j}(t) e^{i(\boldsymbol{k}_{j} \cdot \boldsymbol{r} - \omega_{j}t)} + c.c.$$

$$\psi = \sum_{j} \Psi_{j}(t) e^{i(\boldsymbol{k}_{j} \cdot \boldsymbol{r} - \omega_{j}t)} + c.c.$$

We find that provided the spatial $k_0 = k_+ + k_-$ and temporal $\omega_0 = \omega_+ + \omega_-$ resonance conditions are satisfied, we get

$$\frac{\mathrm{d}\Psi_{\pm}}{\mathrm{d}t} = |I_{\pm}|\Psi_{0}\Psi_{\mp}^{*} - \frac{\nu}{2}k_{\pm}^{2}\Psi_{\pm}$$

where $I_{\pm} = (\ell_0 m_{\mp} - m_0 \ell_{\mp}) [\omega_{\pm} (k_0^2 - k_{\mp}^2) + \ell_{\pm} N^2 (\ell_0 / \omega_0 - \ell_{\mp} / \omega_{\mp})] / (2\omega_{\pm} k_{\pm}^2)$

Resonant triads

1. Good agreement between theory and experiments -Parametric Subharmonic Instability (PSI): amplification of short-scale perturbations with Reduency equal to the that on the Grade Grade of the Grade of the Nearon Inviscing Castle rates. - Why? No threshold for an internal plane wave. - Inadic Resonant Instability (Teourget, Storart, Gattaers, Le Bag, Dinational, JFM 759, 739 (2014).

Finite Width effects

Bourget, Scolan, Dauxois, Le Bars, Odier, Joubaud, JFM 759, 739 (2014)

Finite Width effects

Experimental Results

Thinner beams are more stable than expected!

Energy approach Secondary waves $\stackrel{\text{d}\Psi_{\pm}}{\longrightarrow} \quad \frac{\mathrm{d}\Psi_{\pm}}{\mathrm{d}t} = |I_{\pm}|\Psi_{0}\Psi_{\mp}^{*} - \frac{\nu}{2}k_{\pm}^{2}\Psi_{\pm} - \frac{|\boldsymbol{c}_{g,\pm} \cdot \boldsymbol{e}_{k_{0}}|}{2W}\Psi_{\pm}$ Viscosity Beam width

Identical to the plane wave case.

 $W \gg \lambda_0$

 $W \simeq \lambda_0$

The instability is significantly reduced. Strong ``dissipation".

Prolongations

<u>Theory</u>: Theoretical prediction: Karimi & Akylas JFM (2014).

Numerical simulations: Absolute and convective instability:

- Lerisson's PhD thesis (2017)
- Lerisson & Chomaz PR Fluids (2018)

 $\Box \underline{E \ pur \ si \ muove!} (and \ yet \ it \ moves!): \ c_g \sim \sqrt{(\omega^2 - f^2)(N^2 - \omega^2)}/(\omega k)$

Rotation reducing the ability of subharmonic waves to escape, => it reinforces the instability

Experiments: Maurer, Joubaud & Odier JFM (2016).
 Theory: Karimi & Akylas PR Fluids (2017).

Energy cascade in internal wave attractors

Internal Waves Reflection

Analogous to the « Snell-Descartes » reflection

Internal Waves Reflection

Energy focusing: Linear transfer to small scales

Theoretical prediction

Maas

Internal wave attractor which corresponds to the existence of a *limit cycle*, depending on the geometrical parameters (Maas *et al.*, Nature 1997).

More complex attractors

An internal wave billiard

Experimental setup:

Generator profile: $\eta(z,t) = a\cos(\pi z/H)\cos(\omega t)$

Experimental result:

Experimental Results

Scolan, Ermanuyk, Dauxois, Phys. Rev. Lett. 110, 234501 (2013).

Balance between viscous damping and focusing.

Instability in internal wave attractors for large forcing

Numerical Calculations

Model: Navier-Stokes in Boussinesq approximation + continuity + salt transport Method: spectral elements 2D and 3D, code Nek5000 (Fischer & Ronquist 1994) BC: no-slip at rigid walls, stress-free at free surface

Brouzet, Sibgatullin, Scolan, Ermanyuk, Dauxois JFM (2016)

Internal wave attractors examined using laboratory experiments and 3D numerical simulations

Energy Cascade

Time-frequency diagrams: $S_u(\Omega, t) = \left\langle \left| \int_{-\infty}^{+\infty} u(x, z, \tau) e^{i\Omega N \tau} h(t - \tau) d\tau \right|^2 \right\rangle_{xz}$

attractor amplitude

Energy Cascade

Brouzet, Ermanyuk, Joubaud, Sibgatullin, Dauxois, EPL 113, 44001 (2016)

TRI portrayed by the Bicoherence

Bicoherence $M(\Omega_1, \Omega_2) = F(\Omega_1)F(\Omega_2)F^*(\Omega_1 + \Omega_2)$ F Fourier transform

Well developed instability in a wave attractor

What is beyond internal wave attractor? Is this wave turbulence?

Wave turbulence?

cf. Yarom & Sharon, Nature Physics 2014

Brouzet, Ermanyuk, Joubaud, Sibgatullin, Dauxois, EPL 113, 44001 (2016)

Mixing

Horizontal vorticity: $\xi = \frac{\partial w}{\partial x} - \frac{\partial u}{\partial z}$ Gradient Richardson number: $Ri = \frac{N^2}{(du/dz)^2}$

Modified Richardson number:

$$Ri_{\xi} = \frac{N^2}{\xi^2}$$

Extension of the Miles-Howard condition

$$Ri > \frac{1}{4}$$

Mixing at
$$Ri_{\xi} < \frac{1}{4} \longrightarrow \left| \frac{\xi}{N} \right| > 2$$

Statistics of Mixing events

whole-field horizontal vorticity PDF

Fate of Internal Tides

□ **<u>Triadic Resonant Instability</u>**: *Direct* and *Inverse* transfers occur simultaneously

Streaming instability (mean flow generation): Inverse transfer (waterfall rather than a cascade)

Internal wave attractor: Good experimental set-up to study Wave-turbulence Abyssal mixing

Acknowledgments

Publications

Review Dauxois, Joubaud, Odier, Venaille, Annual Review of Fluid Mechanics (2018)

Triadic
Resonant
InstabilityBourget, Dauxois, Joubaud, Odier, JFM 723, 1 (2013)Bourget, Scolan, Dauxois, Le Bars, Odier, Joubaud JFM 759, 739 (2014)

Mean Flow Bordes, Venaille, Joubaud, Odier & Dauxois, *PoF* 24, 086602 (2012)

Attractors: Instabilities and beyond Scolan, Ermanyuk, Dauxois, PRL 110, 234501 (2013)
Brouzet, Ermanyuk, Joubaud, Sibgatullin, T. Dauxois, EPL 113, 44001 (2016)
Brouzet, Sibgatullin, Scolan, Ermanyuk, Dauxois, JFM 793, 109 (2016)

