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• in the ocean Dr/r ~1/1000

• if similar velocities in both layers             h1~1000h0

• 3 cm of internal displacement            30 µm surface expression

• 100 m of internal displacement 10 cm à la surfaceLarge amplitude internal waves

Internal Waves at a Density Interface
Two Layers
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• Internal gravity waves play a primary role in geophysical fluids 
– Significant contribution to mixing in the ocean (Wunsch & Ferrari ‘04).
– Redistribution of energy and momentum in the middle atmosphere (Fritts & Alexander ‘03).

• Mechanisms
– Generation and propagation are well understood (Garrett & Kunze ’07). 

– By contrast, dissipation mechanisms are still debated (Kunze & Llewellyn-Smith ’04). 
– Wave-Wave interactions - PSI (MacKinnon & Winters ‘05, Alford et al. ’07).
– Reflection on sloping boundaries (Nash et al. ‘04, Dauxois & Young ’99).
– Scattering by mesoscale structures (Rainville & Pinkel ’06).
– Scattering by finite amplitude bathymetry (Johnston & Merrifield & Holloway ‘03; 

Peacock, Mercier, Didelle, Viboud, Dauxois ’09).

– Observed energy spectra resulting from NL waves interactions are poorly understood.
(Garrett & Munk ‘75, Nazarenko ’11)

Internal Waves



Navier-Stokes Eq.

Incompressible flow

Mass conservation

Restricting to 2D and introducing the streamfunction

one gets

One can finally combine above equations inwhere

Basic equations

however, N will be taken constant in the remainder of the paper. In some studies, to ease

greatly the theoretical analysis, this approximation that looks drastic at first sight can be

relaxed when N changes smoothly by relying on the WKB approximation.

The equations of motion can be written as a dynamical system for the perturbed buoy-

ancy field b = b
tot

� b
0

and the three components of the velocity field u = (ux,uy,uz):

r · u = 0, (1)

@tu+ u ·ru = � 1
⇢
ref

rp+ bez + ⌫r2u, (2)

@tb+ u ·rb+ uzN
2 = 0. (3)

with p(r, t) the pressure variation with respect to the hydrostatic equilibrium pressure

P
0

(z) = P
0

(0) � R z

0

⇢
0

(z0)gdz0, and ⌫ the kinematic viscosity. We have also neglected the

molecular di↵usivity, that would imply a term Dr2b in the r.h.s. of Equation (3), with

D the di↵usion coe�cient of the stratifying element (molecular di↵usivity for salt, thermal

di↵usivity for temperature). The importance of the dissipative terms with respect to the

nonlinear ones are described by the Reynolds UL/⌫ and the Peclet numbers UL/D, with U

and L typical velocity and length scales, or equivalently by the Reynolds number and the

Schmidt number ⌫/D. In many geophysical situations, both Reynolds and Peclet numbers

are large, and molecular e↵ects can be neglected at lowest order. In such cases, the results

do not depend on the Schmidt number. In laboratory settings, the Peclet is often also

very large, at least when the stratification agent is salt, in which case D ⇡ 10�9 m2·s�1.

However, the viscosity of water is ⌫ ⇡ 10�6 m2·s�1, and the corresponding Reynolds number

are such that viscous e↵ects can play an important role, as we will see later.

Let us first consider the simplest case of two-dimensional flow, which is invariant in the

transverse y-direction. The non-divergent two-dimensional velocity field is then conveniently

expressed in terms of a streamfunction  (x, z) as u = (@z , 0,�@x ). Introducing the

Jacobian J( , b) = @x @zb � @xb @z , the dynamical system (1), (2) and (3) is expressed

as

@tr2 + J(r2 , ) = �@xb+ ⌫r4 . (4)

@tb+ J(b, )�N2@x = 0. (5)

Di↵erentiating Equation (4) with respect to time and Equation (5) with respect to the

spatial variable x, and subtracting the latter from the former, one gets finally

@ttr2 +N2@xx = ⌫r4@t + @tJ( ,r2 ) + @xJ(b, ), (6)

describing the nonlinear dynamics of non-rotating non-di↵usive viscous stratified fluids in

two dimensions.

2.2. Linear Approximation

In the linear approximation, assuming vanishing viscosity, the right-hand side of Equa-

tion (6) immediately vanishes leading to the following wave equation for the streamfunction

@ttr2 +N2@xx = 0. (7)

This equation is striking for several reasons. First, its mathematical structure is clearly dif-

ferent from the traditional D’Alembert equation. Indeed, the spatial di↵erentiation appears
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tures (Alexander 2003). Oceanic wave beams arise from the interaction of the barotropic

tide with sea-floor topography, as has been recently studied theoretically and numerically

(Khatiwala 2003; Lamb 2004; Maugé & Gerkema 2008), taking into account transient,

finite-depth and nonlinear e↵ects, ignored in the earlier seminal work by Bell (1975). The

importance of those beams has also been emphasized recently in quantitative laboratory

experiments (Gostiaux & Dauxois 2007; King, Zhang & Swinney 2009; Peacock, Echeverri

& Balmforth 2008). From these di↵erent works, it is now recognized that internal wave

beams are ubiquitous in the geophysical context.

The interest for internal gravity beams resonates with the usual pedagogical introduction

to internal waves, the Saint Andrew’s cross, which comprises four beams generated by

oscillating a cylinder in a stratified fluid (Mowbray & Rarity 1967). Thorough studies of

internal wave beams can be found in Voisin (2003). Moreover, Tabaei & Akylas (2003)

have realized that an inviscid uniformly stratified Boussinesq fluid supports time-harmonic

plane waves invariant in one transverse horizontal direction, propagating along a direction

determined by the frequency (and the medium through the buoyancy frequency and the

Coriolis parameter), with a general spatial profile in the cross-beam direction. These wave

beams are not only fundamental to the linearized dynamics but, like sinusoidal wavetrains,

happen to be exact solutions of the nonlinear governing equations. Remarkably, Tabaei &

Akylas (2003) showed that the steady-state similarity linear solution for a viscous beam

(Thomas & Stevenson 1972) is also valid in the nonlinear regime. In light of the recent

experimental and analytical studies of those internal gravity wave beams, it is thus timely

to study their stability properties.

The structure of the review is the following. First, in section 2, we introduce the subject

by presenting concepts, governing equations and approximations that lead to the description

of gravity waves in stratified fluids. We dedicate a special emphasis on the peculiar role

of nonlinearities to explain why internal gravity wave beams are ubiquitous solutions in

oceans and middle atmospheres. Then, in section 3, we discuss the classic triadic resonant

instability that corresponds to the destabilization of a primary wave with the spontaneous

emission of two secondary waves, of lower frequencies and di↵erent wave vectors. In addition

to the simple case of plane waves, we discuss in detail the generalization to wave beams

with a finite width. Section 4 is dedicated to the streaming instability, the second important

mechanism for the instability of internal gravity waves beams through the generation of a

mean flow. Finally, in section 5, we draw some conclusions and discuss main future issues.

2. THE DYNAMICS OF STRATIFIED FLUIDS AND ITS SOLUTIONS

2.1. Basic Equations

Let us consider an incompressible non rotating stratified Boussinesq fluid in Cartesian co-

ordinates (ex,ey,ez) where ez is the direction opposite to the gravity. The Boussinesq

approximation amounts to neglecting density variations with respect to a constant refer-

ence density ⇢
ref

, except when those variations are associated with the gravity term g.

The relevant field to describe the e↵ect of density variations is then the buoyancy field

b
tot

= g (⇢
ref

� ⇢) /⇢
ref

, with ⇢(r, t) the full density field, r=(x,y,z) the space coordinates

and t the time coordinate. Let us call ⇢
0

(z) the density of the flow at rest, with buoyancy fre-

quency N(z) = (�g (@z⇢0) /⇢ref)
1/2. The corresponding buoyancy profile g (⇢

ref

� ⇢
0

) /⇢
ref

is denoted b
0

. The buoyancy frequency N varies in principle with the depth z. In the ocean,

N is rather large in the thermocline and weaker in the abyss. For the sake of simplicity,
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(Khatiwala 2003; Lamb 2004; Maugé & Gerkema 2008), taking into account transient,

finite-depth and nonlinear e↵ects, ignored in the earlier seminal work by Bell (1975). The

importance of those beams has also been emphasized recently in quantitative laboratory

experiments (Gostiaux & Dauxois 2007; King, Zhang & Swinney 2009; Peacock, Echeverri

& Balmforth 2008). From these di↵erent works, it is now recognized that internal wave

beams are ubiquitous in the geophysical context.

The interest for internal gravity beams resonates with the usual pedagogical introduction

to internal waves, the Saint Andrew’s cross, which comprises four beams generated by

oscillating a cylinder in a stratified fluid (Mowbray & Rarity 1967). Thorough studies of

internal wave beams can be found in Voisin (2003). Moreover, Tabaei & Akylas (2003)

have realized that an inviscid uniformly stratified Boussinesq fluid supports time-harmonic

plane waves invariant in one transverse horizontal direction, propagating along a direction

determined by the frequency (and the medium through the buoyancy frequency and the

Coriolis parameter), with a general spatial profile in the cross-beam direction. These wave

beams are not only fundamental to the linearized dynamics but, like sinusoidal wavetrains,

happen to be exact solutions of the nonlinear governing equations. Remarkably, Tabaei &

Akylas (2003) showed that the steady-state similarity linear solution for a viscous beam

(Thomas & Stevenson 1972) is also valid in the nonlinear regime. In light of the recent

experimental and analytical studies of those internal gravity wave beams, it is thus timely

to study their stability properties.

The structure of the review is the following. First, in section 2, we introduce the subject

by presenting concepts, governing equations and approximations that lead to the description

of gravity waves in stratified fluids. We dedicate a special emphasis on the peculiar role

of nonlinearities to explain why internal gravity wave beams are ubiquitous solutions in

oceans and middle atmospheres. Then, in section 3, we discuss the classic triadic resonant

instability that corresponds to the destabilization of a primary wave with the spontaneous

emission of two secondary waves, of lower frequencies and di↵erent wave vectors. In addition

to the simple case of plane waves, we discuss in detail the generalization to wave beams

with a finite width. Section 4 is dedicated to the streaming instability, the second important

mechanism for the instability of internal gravity waves beams through the generation of a

mean flow. Finally, in section 5, we draw some conclusions and discuss main future issues.

2. THE DYNAMICS OF STRATIFIED FLUIDS AND ITS SOLUTIONS

2.1. Basic Equations

Let us consider an incompressible non rotating stratified Boussinesq fluid in Cartesian

coordinates (ex,ey,ez) where ez is the direction opposite to the gravity. The Boussinesq

approximation amounts to neglecting density variations with respect to a constant reference

density ⇢
ref

, except when those variations are associated with the gravity term g. The

relevant field to describe the e↵ect of density variations is then the buoyancy field

b = g (⇢
0

(z)� ⇢) /⇢
ref

, b
tot

= g (⇢
ref

� ⇢) /⇢
ref

, with ⇢(r, t) the full density field, r=(x,y,z)

the space coordinates and t the time coordinate. Let us call ⇢
0

(z) the density of the flow at

rest, with buoyancy frequency N(z) = (�g (@z⇢0) /⇢ref)
1/2. The corresponding buoyancy

profile g (⇢
ref

� ⇢
0

) /⇢
ref

is denoted b
0

. The buoyancy frequency N varies in principle with

the depth z. In the ocean, N is rather large in the thermocline and weaker in the abyss.

www.annualreviews.org

•
Instabilities of internal wave beams 3



Different from the D’Alembert’s equationr2 
tt

+ N2 
xx

= 0

Plane wave solution

 =  0 ei(~k.~r�!t)

Unusual wave equation: Linear Approximation

at second order in both terms. Time-harmonic plane waves with frequency !, wavevector

k = (`, 0,m) and wavenumber k = |k| = (`2 +m2)1/2 are solutions of Equation (7), if the

dispersion relation for internal gravity waves

! = ±N
`
k
= ±N sin ✓, (8)

is satisfied. ✓ is the angle between wavenumber k and the vertical.

Plane wave solution:
 
0

ei(k·r�!t) + c.c.
where c.c. denotes
complex conjugate

The second important remark is that contrary to the usual concentric waves emitted

from the source of excitation when considering the D’Alembert equation, here four di↵er-

ent directions of propagation are possible depending on the sign of ` and m. This is an

illustration of the anisotropic propagation due to the vertical stratification. This remark

is particularly relevant here since one sees that the anisotropy is at the very origin of the

existence of beams for internal waves, the focus of this review.

The third remarkable property is that the dispersion relation features the angle of

propagation rather than the wavelength, emphasizing a clear di↵erence between internal

waves and surface waves. This is also a crucial property for this review since it will allow

us to define beams with a general profile, rather than with a single wavenumber.

2.3. Nonlinear Terms

2.3.1. Plane Wave Solutions. It is striking and pretty unusual that plane waves are solu-

tions of the inviscid nonlinear equation (6) even for large amplitudes. Indeed, the stream-

function of the plane wave solution is a Laplacian eigenmode, with r2 = �k2 . Con-

sequently, the first Jacobian term vanishes in Equation (6). Equation (4) leads therefore

to the so-called polarization relationship b = �
�
N2`/!

�
 ⌘ P , with P the polarization

prefactor. Consequently, the second Jacobian in (6) vanishes: J( ,P ) = 0. To conclude,

both nonlinear terms in Equation (6) vanish for plane wave solutions, that are therefore

solutions of the nonlinear equation, for any amplitude.

2.3.2. Internal Wave Beams. Since the frequency ! is independent of the wavenumber,

it is possible to devise more general solutions, time-harmonic with the same frequency !,

by superposing several linear solutions associated to the same angle of propagation, but

with di↵erent wavenumbers k (McEwan 1973; Tabaei & Akylas 2003). Introducing the

cross-beam direction ⌘ = x sin ✓ + z cos ✓, perpendicular to the direction of propagation

⇠ = x cos ✓ � z sin ✓ (see Figure 1) the plane wave solution can be written as
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since ` = k sin ✓ and m = k cos ✓. If one introduces Q(⌘) = ik 
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eik⌘, one obtains the

velocity field u = Q(⌘)(cos ✓, 0,� sin ✓)e�i!t + c.c. and the buoyancy perturbation b =

�i(P/k)Q(⌘)e�i!t + c.c. .

One can actually obtain a wider class of solutions by considering an arbitrary complex

amplitude Q(⌘). Indeed, the fields u and b do not depend on the longitudinal variable ⇠.

Consequently, after the change of variables, the Jacobians, which read J( , b) = @⇠ @⌘b�
@⌘b @⇠ , simply vanish, making the governing equations linear. As discussed in Tabaei,

Akylas & Lamb (2005), note that uni-directional beams, in which energy propagates in

one direction, involve plane waves with wavenumbers of the same sign only.
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We see that the class of propagating waves that are solutions of the nonlinear dynamics

in a Boussinesq stratified fluid is much more general than plane wave solutions: there

is a whole family of solutions corresponding to uniform plane waves in the longitudinal

direction ⇠, but with a general profile in the cross-beam direction ⌘, as represented in

Figure 1. Internal wave beams are very important cases.
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Figure 1

(a) Schematic representation of an internal wave beam and definition of the longitudinal and
cross-beam coordinates ⇠ and ⌘, of the angle of inclination ✓, and finally of the group and phase
velocities cg and c'. (b) Geometry of an uniform (along ⇠) internal wave beam inclined at an
angle ✓ to the horizontal. The beam profile varies in the cross-beam ⌘ direction, and the associated
flow velocity is in the along-beam direction ⇠. The transverse horizontal direction is denoted by y.

Tabaei & Akylas (2003) have generalized those results by computing asymptotic solu-

tions for a slightly viscous nonlinear wave beam with amplitude slowly modulated along ⇠

and in time. After considerable manipulation, it turns out that all leading-order nonlinear

advective-acceleration terms in the governing equations of motion vanish, and a uniform

(along ⇠) beam, regardless of its profile (along ⌘), represents an exact nonlinear solution

in an unbounded, inviscid, uniformly stratified fluid. This result not only extends the va-

lidity of the Thomas & Stevenson (1972) steady-state similarity solution to the nonlinear

regime, but emphasizes how nonlinearity has only relatively weak consequences. This has

profound and useful consequences on the applicability of results obtained with linear theory

for comparisons to field observations, laboratory experiments or numerical simulations.

The vanishing of the nonlinear contributions is really unexpected and results from the

combination of numerous di↵erent terms. However, Tabaei & Akylas (2003) noticed that

the underlying reason for the seemingly miraculous cancellation of the resonant nonlinear

terms was the very same one that had been already pointed out by Dauxois & Young

(1999). After lengthy calculations, in both cases, the reason is a special case of the Jacobi

identity J [A, J(B,C)]+J [C, J(A,B)]+J [J(A,C), B] = 0. Dauxois & Young (1999) were

studying near-critical reflection of a finite amplitude internal wave on a slope to heal the

singularity occurring in the solution of Phillips (1966). Using matched asymptotic, they

took a distinguished limit in which the amplitude of the incident wave, the dissipation, and

the departure from criticality are all small. At the end, although the reconstructed fields do

contain nonlinearly driven second harmonics, they obtained the striking and unusual result

that the final amplitude equation happens to be a linear equation. The underlying reason

was already this Jacobi identity.1

1Studying the mechanism of superharmonic generation, Liang, Zareei & Alam (2017) reported
recently another situation for which the nonlinear terms vanish in the domain bulk. Interestingly,
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Plane wave solution
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existence of beams for internal waves, the focus of this review.

The third remarkable property is that the dispersion relation features the angle of

propagation rather than the wavelength, emphasizing a clear di↵erence between internal

waves and surface waves. This is also a crucial property for this review since it will allow

us to define beams with a general profile, rather than with a single wavenumber.

2.3. Nonlinear Terms

2.3.1. Plane Wave Solutions. It is striking and pretty unusual that plane waves are solu-

tions of the inviscid nonlinear equation (6) even for large amplitudes. Indeed, the stream-

function of the plane wave solution is a Laplacian eigenmode, with r2 = �k2 . Con-

sequently, the first Jacobian term vanishes in Equation (6). Equation (4) leads therefore

to the so-called polarization relationship b = �
�
N2`/!
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 ⌘ P , with P the polarization

prefactor. Consequently, the second Jacobian in (6) vanishes: J( ,P ) = 0. To conclude,

both nonlinear terms in Equation (6) vanish for plane wave solutions, that are therefore

solutions of the nonlinear equation, for any amplitude.

2.3.2. Internal Wave Beams. Since the frequency ! is independent of the wavenumber,

it is possible to devise more general solutions, time-harmonic with the same frequency !,

by superposing several linear solutions associated to the same angle of propagation, but

with di↵erent wavenumbers k (McEwan 1973; Tabaei & Akylas 2003). Introducing the

cross-beam direction ⌘ = x sin ✓ + z cos ✓, perpendicular to the direction of propagation

⇠ = x cos ✓ � z sin ✓ (see Figure 1) the plane wave solution can be written as

 (x, y, z, t) =  
0

ei`x+imz�i!t + c.c. =  
0

eik⌘ e�i!t + c.c. , (9)

since ` = k sin ✓ and m = k cos ✓. If one introduces Q(⌘) = ik 
0

eik⌘, one obtains the

velocity field u = Q(⌘)(cos ✓, 0,� sin ✓)e�i!t + c.c. and the buoyancy perturbation b =

�i(P/k)Q(⌘)e�i!t + c.c. .

One can actually obtain a wider class of solutions by considering an arbitrary complex

amplitude Q(⌘). Indeed, the fields u and b do not depend on the longitudinal variable ⇠.

Consequently, after the change of variables, the Jacobians, which read J( , b) = @⇠ @⌘b�
@⌘b @⇠ , simply vanish, making the governing equations linear. As discussed in Tabaei,

Akylas & Lamb (2005), note that uni-directional beams, in which energy propagates in

one direction, involve plane waves with wavenumbers of the same sign only.
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Unusual wave equation: Nonlinear

however, N will be taken constant in the remainder of the paper. In some studies, to ease

greatly the theoretical analysis, this approximation that looks drastic at first sight can be

relaxed when N changes smoothly by relying on the WKB approximation.

The equations of motion can be written as a dynamical system for the perturbed buoy-

ancy field b = b
tot

� b
0

and the three components of the velocity field u = (ux,uy,uz):

r · u = 0, (1)

@tu+ u ·ru = � 1
⇢
ref

rp+ bez + ⌫r2u, (2)

@tb+ u ·rb+ uzN
2 = 0. (3)

with p(r, t) the pressure variation with respect to the hydrostatic equilibrium pressure

P
0

(z) = P
0

(0) � R z

0

⇢
0

(z0)gdz0, and ⌫ the kinematic viscosity. We have also neglected the

molecular di↵usivity, that would imply a term Dr2b in the r.h.s. of Equation (3), with

D the di↵usion coe�cient of the stratifying element (molecular di↵usivity for salt, thermal

di↵usivity for temperature). The importance of the dissipative terms with respect to the

nonlinear ones are described by the Reynolds UL/⌫ and the Peclet numbers UL/D, with U

and L typical velocity and length scales, or equivalently by the Reynolds number and the

Schmidt number ⌫/D. In many geophysical situations, both Reynolds and Peclet numbers

are large, and molecular e↵ects can be neglected at lowest order. In such cases, the results

do not depend on the Schmidt number. In laboratory settings, the Peclet is often also

very large, at least when the stratification agent is salt, in which case D ⇡ 10�9 m2·s�1.

However, the viscosity of water is ⌫ ⇡ 10�6 m2·s�1, and the corresponding Reynolds number

are such that viscous e↵ects can play an important role, as we will see later.

Let us first consider the simplest case of two-dimensional flow, which is invariant in the

transverse y-direction. The non-divergent two-dimensional velocity field is then conveniently

expressed in terms of a streamfunction  (x, z) as u = (@z , 0,�@x ). Introducing the

Jacobian J( , b) = @x @zb � @xb @z , the dynamical system (1), (2) and (3) is expressed

as

@tr2 + J(r2 , ) = �@xb+ ⌫r4 . (4)

@tb+ J(b, )�N2@x = 0. (5)

Di↵erentiating Equation (4) with respect to time and Equation (5) with respect to the

spatial variable x, and subtracting the latter from the former, one gets finally

@ttr2 +N2@xx = ⌫r4@t + @tJ( ,r2 ) + @xJ(b, ), (6)

describing the nonlinear dynamics of non-rotating non-di↵usive viscous stratified fluids in

two dimensions.

2.2. Linear Approximation

In the linear approximation, assuming vanishing viscosity, the right-hand side of Equa-

tion (6) immediately vanishes leading to the following wave equation for the streamfunction

@ttr2 +N2@xx = 0. (7)

This equation is striking for several reasons. First, its mathematical structure is clearly dif-

ferent from the traditional D’Alembert equation. Indeed, the spatial di↵erentiation appears
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Internal Wave Beams

at second order in both terms. Time-harmonic plane waves with frequency !, wavevector

k = (`, 0,m) and wavenumber k = |k| = (`2 +m2)1/2 are solutions of Equation (7), if the

dispersion relation for internal gravity waves

! = ±N
`
k
= ±N sin ✓, (8)

is satisfied. ✓ is the angle between wavenumber k and the vertical.

Plane wave solution:
 
0

ei(k·r�!t) + c.c.
where c.c. denotes
complex conjugate

The second important remark is that contrary to the usual concentric waves emitted

from the source of excitation when considering the D’Alembert equation, here four di↵er-

ent directions of propagation are possible depending on the sign of ` and m. This is an

illustration of the anisotropic propagation due to the vertical stratification. This remark

is particularly relevant here since one sees that the anisotropy is at the very origin of the

existence of beams for internal waves, the focus of this review.

The third remarkable property is that the dispersion relation features the angle of

propagation rather than the wavelength, emphasizing a clear di↵erence between internal

waves and surface waves. This is also a crucial property for this review since it will allow

us to define beams with a general profile, rather than with a single wavenumber.

2.3. Nonlinear Terms

2.3.1. Plane Wave Solutions. It is striking and pretty unusual that plane waves are solu-

tions of the inviscid nonlinear equation (6) even for large amplitudes. Indeed, the stream-

function of the plane wave solution is a Laplacian eigenmode, with r2 = �k2 . Con-

sequently, the first Jacobian term vanishes in Equation (6). Equation (4) leads therefore

to the so-called polarization relationship b = �
�
N2`/!

�
 ⌘ P , with P the polarization

prefactor. Consequently, the second Jacobian in (6) vanishes: J( ,P ) = 0. To conclude,

both nonlinear terms in Equation (6) vanish for plane wave solutions, that are therefore

solutions of the nonlinear equation, for any amplitude.

2.3.2. Internal Wave Beams. Since the frequency ! is independent of the wavenumber,

it is possible to devise more general solutions, time-harmonic with the same frequency !,

by superposing several linear solutions associated to the same angle of propagation, but

with di↵erent wavenumbers k (McEwan 1973; Tabaei & Akylas 2003). Introducing the

cross-beam direction ⌘ = x sin ✓ + z cos ✓, perpendicular to the direction of propagation

⇠ = x cos ✓ � z sin ✓ (see Figure 1) the plane wave solution can be written as

 (x, y, z, t) =  
0

ei`x+imz�i!t + c.c. =  
0

eik⌘ e�i!t + c.c. , (9)

since ` = k sin ✓ and m = k cos ✓. If one introduces Q(⌘) = ik 
0

eik⌘, one obtains the

velocity field u = Q(⌘)(cos ✓, 0,� sin ✓)e�i!t + c.c. and the buoyancy perturbation b =

�i(P/k)Q(⌘)e�i!t + c.c. .

One can actually obtain a wider class of solutions by considering an arbitrary complex

amplitude Q(⌘). Indeed, the fields u and b do not depend on the longitudinal variable ⇠.

Consequently, after the change of variables, the Jacobians, which read J( , b) = @⇠ @⌘b�
@⌘b @⇠ , simply vanish, making the governing equations linear. As discussed in Tabaei,

Akylas & Lamb (2005), note that uni-directional beams, in which energy propagates in

one direction, involve plane waves with wavenumbers of the same sign only.

Internal wave beam:
Superposition of
time-harmonic plane
waves with an
arbitrary profile in
the cross-beam
direction.

We see that the class of propagating waves that are solutions of the nonlinear dynamics

in a Boussinesq stratified fluid is much more general than plane wave solutions: there
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• Consequences:
- Nonlinearity has only relative weak consequences…at first sight.
- Applicability of linear results to field observations, lab. expts or numerical simulations.

A uniform (along   ) beam, regardless of its profile (along   ), is an exact NL solution.
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one direction, involve plane waves with wavenumbers of the same sign only.

Internal wave beam:
Superposition of
time-harmonic plane
waves with an
arbitrary profile in
the cross-beam
direction.

We see that the class of propagating waves that are solutions of the nonlinear dynamics

in a Boussinesq stratified fluid is much more general than plane wave solutions: there
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however, N will be taken constant in the remainder of the paper. In some studies, to ease

greatly the theoretical analysis, this approximation that looks drastic at first sight can be

relaxed when N changes smoothly by relying on the WKB approximation.

The equations of motion can be written as a dynamical system for the perturbed buoy-

ancy field b = b
tot

� b
0

and the three components of the velocity field u = (ux,uy,uz):

r · u = 0, (1)

@tu+ u ·ru = � 1
⇢
ref

rp+ bez + ⌫r2u, (2)

@tb+ u ·rb+ uzN
2 = 0. (3)

with p(r, t) the pressure variation with respect to the hydrostatic equilibrium pressure

P
0

(z) = P
0

(0) � R z

0

⇢
0

(z0)gdz0, and ⌫ the kinematic viscosity. We have also neglected the

molecular di↵usivity, that would imply a term Dr2b in the r.h.s. of Equation (3), with

D the di↵usion coe�cient of the stratifying element (molecular di↵usivity for salt, thermal

di↵usivity for temperature). The importance of the dissipative terms with respect to the

nonlinear ones are described by the Reynolds UL/⌫ and the Peclet numbers UL/D, with U

and L typical velocity and length scales, or equivalently by the Reynolds number and the

Schmidt number ⌫/D. In many geophysical situations, both Reynolds and Peclet numbers

are large, and molecular e↵ects can be neglected at lowest order. In such cases, the results

do not depend on the Schmidt number. In laboratory settings, the Peclet is often also

very large, at least when the stratification agent is salt, in which case D ⇡ 10�9 m2·s�1.

However, the viscosity of water is ⌫ ⇡ 10�6 m2·s�1, and the corresponding Reynolds number

are such that viscous e↵ects can play an important role, as we will see later.

Let us first consider the simplest case of two-dimensional flow, which is invariant in the

transverse y-direction. The non-divergent two-dimensional velocity field is then conveniently

expressed in terms of a streamfunction  (x, z) as u = (@z , 0,�@x ). Introducing the

Jacobian J( , b) = @x @zb � @xb @z , the dynamical system (1), (2) and (3) is expressed

as

@tr2 + J(r2 , ) = �@xb+ ⌫r4 . (4)

@tb+ J(b, )�N2@x = 0. (5)

Di↵erentiating Equation (4) with respect to time and Equation (5) with respect to the

spatial variable x, and subtracting the latter from the former, one gets finally

@ttr2 +N2@xx = ⌫r4@t + @tJ( ,r2 ) + @xJ(b, ), (6)

describing the nonlinear dynamics of non-rotating non-di↵usive viscous stratified fluids in

two dimensions.

2.2. Linear Approximation

In the linear approximation, assuming vanishing viscosity, the right-hand side of Equa-

tion (6) immediately vanishes leading to the following wave equation for the streamfunction

@ttr2 +N2@xx = 0. (7)

This equation is striking for several reasons. First, its mathematical structure is clearly dif-

ferent from the traditional D’Alembert equation. Indeed, the spatial di↵erentiation appears
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J( , b) = J( , R ) = 0
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J( ,r2 ) = J( ,�k2 ) = 0

J( , b) = J( , R ) = 0

at second order in both terms. Time-harmonic plane waves with frequency !, wavevector

k = (`, 0,m) and wavenumber k = |k| = (`2 +m2)1/2 are solutions of Equation (7), if the

dispersion relation for internal gravity waves

! = ±N
`
k
= ±N sin ✓, (8)

is satisfied. ✓ is the angle between wavenumber k and the vertical.

Plane wavesolution:
 
0

ei(k·r�!t) + c.c.
where c.c. denotes
complex conjugate

The second important remark is that contrary to the usual concentric waves emitted

from the source of excitation when considering the D’Alembert equation, here four di↵er-

ent directions of propagation are possible depending on the sign of ` and m. This is an

illustration of the anisotropic propagation due to the vertical stratification. This remark

is particularly relevant here since one sees that the anisotropy is at the very origin of the

existence of beams for internal waves, the focus of this review.

The third remarkable property is that the dispersion relation features the angle of

propagation rather than the wavelength, emphasizing a clear di↵erence between internal

waves and surface waves. This is also a crucial property for this review since it will allow

us to define beams with a general profile, rather than with a single wavenumber.

2.3. Nonlinear Terms

2.3.1. Plane Wave Solutions. It is striking and pretty unusual that plane waves are solu-

tions of the inviscid nonlinear equation (6) even for large amplitudes. Indeed, the stream-

function of the plane wave solution is a Laplacian eigenmode, with r2 = �k2 . Con-

sequently, the first Jacobian term vanishes in Equation (6). Equation (4) leads therefore

to the so-called polarization relationship b = �
�
N2`/!

�
 ⌘ P , with P the polarization

prefactor. Consequently, the second Jacobian in (6) vanishes: J( ,P ) = 0. To conclude,

both nonlinear terms in Equation (6) vanish for plane wave solutions, that are therefore

solutions of the nonlinear equation, for any amplitude.

2.3.2. Internal Wave Beams. Since the frequency ! is independent of the wavenumber,

it is possible to devise more general solutions, time-harmonic with the same frequency !,

by superposing several linear solutions associated to the same angle of propagation, but

with di↵erent wavenumbers k (McEwan 1973; Tabaei & Akylas 2003). Introducing the

cross-beam direction ⌘ = x sin ✓ + z cos ✓, perpendicular to the direction of propagation

⇠ = x cos ✓ � z sin ✓ (see Figure 1) the plane wave solution can be written as

 (x, y, z, t) =  
0

ei`x+imz�i!t + c.c. =  
0

eik⌘ e�i!t + c.c. , (9)

since ` = k sin ✓ and m = k cos ✓. If one introduces Q(⌘) = ik 
0

eik⌘, one obtains the

velocity field u = Q(⌘)(cos ✓, 0,� sin ✓)e�i!t + c.c. and the buoyancy perturbation b =

�i(P/k)Q(⌘)e�i!t + c.c. .

One can actually obtain a wider class of solutions by considering an arbitrary complex

amplitude Q(⌘). Indeed, the fields u and b do not depend on the longitudinal variable ⇠.

Consequently, after the change of variables, the Jacobians, which read

J( , b) = @⇠ @⌘b � @⇠b @⌘ = 0 J( , b) = @⇠ @⌘b� @⌘b @⇠ , simply vanish, making the

governing equations linear. As discussed in Tabaei, Akylas & Lamb (2005), note that uni-

directional beams, in which energy propagates in one direction, involve plane waves with

wavenumbers of the same sign only: Q(⌘) =
R

+1
0

A(k)eik⌘dk or Q(⌘) =
R

0

�1 A(k)eik⌘dk.

Internal wave beam:
Superposition of
time-harmonic plane
waves with an
arbitrary profile in
the cross-beam
direction.
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at second order in both terms. Time-harmonic plane waves with frequency ω, wave vector

k = (ℓ, 0, m) and wavenumber k = |k| = (ℓ2 +m2)1/2 are solutions of Equation (7), if the
dispersion relation for internal gravity waves

ω = ±N
ℓ
k
= ±N sin θ, (8)

is satisfied. θ is the angle between wavenumber k and the vertical.

Plane wave:
ψ0 e

i(k·r−ωt) + c.c.
where c.c. denotes
complex conjugate

The second important remark is that contrary to the usual concentric waves emitted
from the source of excitation when considering the d’Alembert equation, here four differ-

ent directions of propagation are possible depending on the sign of ℓ and m. This is an

illustration of the anisotropic propagation due to the vertical stratification.
The third remarkable property is that the dispersion relation features the angle of

propagation rather than the wavelength, emphasizing a clear difference between internal
waves and surface waves. This is also a crucial property for this review since it will allow

us to define beams with a general profile, rather than with a single wavenumber.

2.3. Nonlinear Terms

2.3.1. Plane Wave Solutions. It is striking and pretty unusual that plane waves are solu-

tions of the inviscid nonlinear equation (6) even for large amplitudes. Indeed, the stream-

function of the plane wave solution is a Laplacian eigenmode, with ∇2ψ = −k2ψ. Conse-
quently, the first Jacobian term vanishes in Equation (6). Equation (4) leads therefore to

the so-called polarization relation b = −
(
N2ℓ/ω

)
ψ ≡ Pψ, with P the polarization prefac-

tor. Consequently, the second Jacobian in (6) vanishes: J(ψ,Pψ) = 0. To conclude, both

nonlinear terms in Equation (6) vanish for plane wave solutions, that are therefore solutions

of the nonlinear equation, for any amplitude.

2.3.2. Internal Wave Beams. Since the frequency ω is independent of the wavenumber, it

is possible to devise more general solutions, time-harmonic with the same frequency ω, by
superposing several linear solutions associated to the same angle of propagation, but with

different wavenumbers k (McEwan 1973; Tabaei & Akylas 2003). Introducing the along-
beam coordinate ξ = x cos θ − z sin θ, defined along the direction of propagation, and the

cross-beam coordinate η = x sin θ + z cos θ (see Figure 1), the plane wave solution can be

written as

ψ(x, y, z, t) = ψ0 e
i(ℓx+mz−ωt) + c.c. = ψ0 e

ikη e−iωt + c.c. , (9)

since ℓ = k sin θ and m = k cos θ. If one introduces Q(η) = ikψ0e
ikη, one obtains the

velocity field
u = u(η)(cos θ, 0,− sin θ)e−iωt + c.c.

b = −i(P/k)u(η)e−iωt + c.c. .
One can actually obtain a wider class of solutions by considering an arbitrary com-

plex amplitude Q(η). Indeed, the fields u and b do not depend on the longitudi-

nal variable ξ. Consequently, after the change of variables, the Jacobians, which read
J(ψ, b) = ∂ξψ ∂ηb− ∂ξb ∂ηψ, simply vanish, making the governing equations linear. As dis-

cussed in Tabaei, Akylas & Lamb (2005), note that uni-directional beams, in which energy

propagates in one direction, involve plane waves with wavenumbers of the same sign only:
Q(η) =

∫ +∞
0

A(k)eikηdk or Q(η) =
∫ 0

−∞ A(k)eikηdk.

Internal wave beam:
Superposition of
time-harmonic plane
waves with an
arbitrary profile in
the cross-beam
direction.
We will call uniform
beam the special
case of a internal
plane wave with a
locally confined
spatial profile.
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• Prolongations: Nonlinear terms cancel out when considering
- Reflection of Internal Waves: Dauxois & Young, JFM (1999)
- Modulated Nonlinear Beams: Tabaei & Akylas, JFM (2003)

x

z

η

ξ

u(η)

θ

g



Lamb, GRL 2004

Maugé & Gerkema, NPG 2008Gostiaux & Dauxois, PoF 2007

Peacock, Echeverri & Balmforth, JPO 2008

Numerical SimulationsExperiments

filtered at the excitation frequency ! the time series of the
density gradient field over one experimental tidal period !see
Ref. 13 for more details about this method".

An internal tide is clearly seen to emanate from the up-
per part of the slope and radiate away from the shelf-break in
both directions. However, it is important to stress the absence
of a third beam radiated transversely to the topography. This
contradicts Baines’ analytical theory2 in which this third
beam reflects on the surface and is present in the general
solution for the downward propagating wave. The explana-
tion presumably lies in the presence of a singular point in
Baines’ case or in St. Laurent et al. numerical simulation.9 In

numerical experiments with a smooth slope and a typically
shallow continental shelf,4 no such beam was found and the
presence of this third beam was already ambiguous in previ-
ous experiments.14

The amplitude of the vertical density gradient is given in
terms of variations of the squared Brunt-Väisälä frequency.
If one considers the original value of N2=0.66 rad2 /s2, the
measured amplitude of "N2= ±0.005 rad2 /s2 for the internal
wave is a very small perturbation of the original stratifica-
tion. Using the mass conservation relation

i!!# − #̄" = w
d#̄

dz
, !1"

where # is the perturbated density, #̄!z" is the initial density,
and w is the vertical density, we obtain typical vertical ve-
locities of order ±0.11 mm/s, corresponding to vertical dis-
placements of ±0.15 mm. This is one of the interests of the
synthetic Schlieren technique that allows us to measure very
weak perturbations of the buoyancy field and thus to inves-
tigate weakly nonlinear regimes. This vertical amplitude has
to be compared to the barotropic elevation of the water in-
duced by the forcing. The paddle oscillates with an A
=0.5 cm amplitude, and the width of the free water volume
in the tank is 90 cm for a height of H=12 cm. The corre-
sponding elevation of the water at the level of the slope is
thus "H=0.7 mm. The baroclinic component observed is
thus still a perturbation of the barotropic tide.

To the right of the generation point C, energy propaga-
tion is downward, while to the left it is upward. As a conse-
quence of the internal waves propagation law for which
group and phase velocities are orthogonal with opposite ver-
tical components, phase propagation is thus upward to the
right and downward to the left. One can conclude from this
simple observation that the phase has to rotate around C,
which is therefore an amphidromic point. Our filtering tech-
nique allows us to evaluate the phase of the wave,13 which is
plotted in Fig. 2!b". One can clearly see that the isophase
lines converge on a single point previously referred to as the
generation point C, around which the phase rotates
uniformly.

Whereas the location and the inclination of the internal
tide are well understood, the selection mechanism of the
width of the beam was not yet clearly identified by previous
studies. Several length scales can be considered in this prob-
lem. The first one corresponds to the thickness of the oscil-
lating boundary layer $= !% /!"1/2, where % is the kinematic
viscosity. In the present case, $=1.8 mm. The second one is
the local radius of curvature of the continental shelf R
=3.3 cm. Finally, the dimensions of the shelf itself !h,H , . . ."
that play a role2 in the “flat-bump” geometry for which &
'( happen to be irrelevant in the configuration of a steep
topography.

Our understanding18 is directly inspired from the genera-
tion of internal waves by oscillating cylinders. One can
therefore try to draw an analogy between the internal tide
generation by a curved static topography of a given radius of
curvature R and the internal waves generation by an oscillat-
ing cylinder of the same radius R in a stratified fluid.

FIG. 1. Sketch of the experimental setup. A PVC plate is oscillating between
the solid and dashed oblique lines indicated on the right, creating the tide.
The continental shelf consists of two planar PVC plates connected by a
quarter of cylinder of radius R=3.3 cm. The upper plate is nearly horizontal,
while the down-going one makes an angle &=78° with the horizontal. The
aspect ratio h /H is 2/3, for a total water height h+H=19 cm. The critical
point C indicates the location where the internal tide generation is supposed
to occur, i.e., where the internal beam inclined at an angle (=23° with the
horizontal tangent to the topography. The dotted rectangle indicates the zone
captured by the camera and presented in Fig. 2!a".

FIG. 2. !Color online" Panel !a" presents the two-dimensional vertical den-
sity gradient, while panel !b" shows the phase. Both plots have been aver-
aged over one tidal period of the experiment around t=3 T. Horizontal and
vertical distances are in cm. The generation point C appears to be an am-
phidromic point around which the phase of the wave rotates.
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Plate 1. Contours of turbulence kinetic energy dissipation rate " during the first along-ridge section. Ticks at the
top mark advanced microstructure profiler (AMP) drops, and white contour lines denote constant potential density
æ

µ

at intervals of 0.1 kg m°3. The thicker white lines are æ
µ

= 26.1 and 26.6 kg m°3. The ray path of the M2

internal tide emanating from the shelf break was calculated using an averaged vertical profile of buoyancy frequency
N (thick solid black curve) (equation (1)). The M2 characteristics including the eÆect of a horizontal stratification
N

x

= 10°4 s°1 and a horizontal velocity gradient @
x

V = 10°5 s°1 (equation (2)) are identical to the solid curve.
The dashed black line denotes the M2 characteristics including the eÆect of mean vertical shear of a magnitude
of 0.001 s°1 (equation (3)). Black arrows represent acoustic Doppler current profiler (ADCP) horizontal velocity
vectors. We have rotated the velocity vector so that the positive x component of velocity denotes the along-ridge
onshore velocity and the positive y component velocity denotes the northwestward across-ridge velocity. The red
arrows at the top mark locations of the profiles shown in Figure 2.
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Experimental Internal Wave Beams
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We see that the class of propagating waves that are solutions of the nonlinear dynamics

in a Boussinesq stratified fluid is much more general than plane wave solutions: there

is a whole family of solutions corresponding to uniform plane waves in the longitudinal

direction ⇠, but with a general profile in the cross-beam direction ⌘, as represented in

Figure 1. Internal wave beams are very important cases.
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Figure 1

(a) Schematic representation of an internal wave beam and definition of the longitudinal and
cross-beam coordinates ⇠ and ⌘, of the angle of inclination ✓, and finally of the group and phase
velocities cg and c'. (b) Geometry of an uniform (along ⇠) internal wave beam inclined at an
angle ✓ to the horizontal. The beam profile varies in the cross-beam ⌘ direction, and the associated
flow velocity is in the along-beam direction ⇠. The transverse horizontal direction is denoted by y.

Tabaei & Akylas (2003) have generalized those results by computing asymptotic solu-

tions for a slightly viscous nonlinear wave beam with amplitude slowly modulated along ⇠

and in time. After considerable manipulation, it turns out that all leading-order nonlinear

advective-acceleration terms in the governing equations of motion vanish, and a uniform

(along ⇠) beam, regardless of its profile (along ⌘), represents an exact nonlinear solution

in an unbounded, inviscid, uniformly stratified fluid. This result not only extends the va-

lidity of the Thomas & Stevenson (1972) steady-state similarity solution to the nonlinear

regime, but emphasizes how nonlinearity has only relatively weak consequences. This has

profound and useful consequences on the applicability of results obtained with linear theory

for comparisons to field observations, laboratory experiments or numerical simulations.

The vanishing of the nonlinear contributions is really unexpected and results from the

combination of numerous di↵erent terms. However, Tabaei & Akylas (2003) noticed that

the underlying reason for the seemingly miraculous cancellation of the resonant nonlinear

terms was the very same one that had been already pointed out by Dauxois & Young

(1999). After lengthy calculations, in both cases, the reason is a special case of the Jacobi

identity J [A, J(B,C)]+J [C, J(A,B)]+J [J(A,C), B] = 0. Dauxois & Young (1999) were

studying near-critical reflection of a finite amplitude internal wave on a slope to heal the

singularity occurring in the solution of Phillips (1966). Using matched asymptotic, they

took a distinguished limit in which the amplitude of the incident wave, the dissipation, and

the departure from criticality are all small. At the end, although the reconstructed fields do

contain nonlinearly driven second harmonics, they obtained the striking and unusual result

that the final amplitude equation happens to be a linear equation. The underlying reason

was already this Jacobi identity.1

1Studying the mechanism of superharmonic generation, Liang, Zareei & Alam (2017) reported
recently another situation for which the nonlinear terms vanish in the domain bulk. Interestingly,
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the departure from criticality are all small. At the end, although the reconstructed fields do

contain nonlinearly driven second harmonics, they obtained the striking and unusual result

that the final amplitude equation happens to be a linear equation. The underlying reason

was already this Jacobi identity.1

1Studying the mechanism of superharmonic generation, Liang, Zareei & Alam (2017) reported
recently another situation for which the nonlinear terms vanish in the domain bulk. Interestingly,
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-Gostiaux, Didelle, Mercier, Dauxois Exp. in Fluids (2007)
-Mercier, Mathur, Gostiaux, Martinand, Peacock, Dauxois JFM (2010)



• State:
– Internal wave beams are solutions of the Nonlinear equations
– Identifying a solution does not mean that it is a stable one! 

Résumé

• Objective of this talk: 
– Present recent progress on NL destabilization of internal wave beams 
– Bridging part of the gap between our understanding of their 

– Generation mechanisms based mostly on linear analysis, 
– subsequent evolution through nonlinear effects.

– Studying Abyssal mixing in the lab. with internal wave beams.

• Dauxois, Joubaud, Odier, Venaille, Annual Review of Fluid Mechanics 2018
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Time-frequency Analysis

The Triadic Resonant Instability (TRI) versus the Parametric Subharmonic Instability (PSI)

The classic Triadic Resonant Instability corresponds to the destabilization of a primary wave through the

spontaneous emission of two secondary waves. The frequencies and wave vectors of these three waves are

related by the spatial, k
0

= k
+

+ k�, and the temporal, !
0

= !
+

+ !�, resonance conditions, where the

indices 0 and ± refer respectively to the primary and secondary waves.

In the inviscid case, the most unstable triad corresponds to antiparallel, infinitely long secondary wave

vectors associated with frequencies which are both half of the primary wave frequency: !
+

' !� ' !
0

/2.

Because of the direct analogy with the parametric oscillator, this particular case defines the Parametric

Subharmonic Instability (PSI). This special case applies to many geophysical situations, and especially for

oceanic applications.

In laboratory experiments, viscosity plays an important role and the two secondary wave frequencies are

di↵erent. By abuse of language, some authors have sometimes extended the use of the name PSI to cases

for which secondary waves are not corresponding to half the forcing frequency. To avoid confusion, in the

general case, it is presumably more appropriate to use the acronym TRI.

X

j

[Ṙj � i!jRj � iN2`j j ]e
i(kj ·r�!jt) + c.c. = �J(b, ) , (11)

The left-hand sides represent the linear parts of the dynamics. Neglecting the nonlinear

terms, as well as the viscous terms and the temporal evolution of the amplitudes, one

recovers the polarization expression Rj = �(N2`j/!j) j and the dispersion relation !j =

N |`j |/
p
`2j +m2

j . This linear system is resonantly forced by the Jacobian nonlinear terms

on the right-hand side when the waves fulfill a spatial resonance condition

k
0

= k
+

+ k� (12)

and a temporal resonance condition

!
0

= !
+

+ !� . (13)

The Jacobian terms in Equations (10) and (11) can then be written as the sum of a resonant

term that will drive the instability, plus some unimportant non resonant terms. Introducing

this result into Equation (10), one obtains three relations between  j and Rj for each mode

exp[i(kj · r � !jt)] with j = 0,+ or �. One gets

R± =
1
i`±

⇥
k2

±( ̇± � i!± ±) + ⌫k4

± ± + ↵± 0

 ⇤
⌥
⇤
, (14)

where ↵± = (`
0

m⌥ � m
0

`⌥)(k
2

0

� k2

⌥). Here, one traditionally uses the “pump-wave”

approximation, which assumes that over the initial critical growth period of the secondary

waves, the primary wave amplitude,  
0

, remains constant and that the amplitude varies

slowly with respect to the period of the wave ( ̇j ⌧ !j j). Di↵erentiating the polarization

expression, cumbersome but straightforward calculations (Bourget et al. 2013) lead to first

order to

d ±

dt
= |I±| 0

 ⇤
⌥ � ⌫

2
k2

± ±, (15)
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@�

@x

= `

@�

@z

= m

at second order in both terms. Time-harmonic plane waves with frequency !, wavevector

k = (`, 0,m) and wavenumber k = |k| = (`2 +m2)1/2 are solutions of Equation (7), if the

dispersion relation for internal gravity waves

! = ±N
`
k
= ±N sin ✓, (8)

is satisfied. ✓ is the angle between wavenumber k and the vertical.

Plane wave solution:
 
0

ei(k·r�!t) + c.c.
where c.c. denotes
complex conjugate

The second important remark is that contrary to the usual concentric waves emitted

from the source of excitation when considering the D’Alembert equation, here four di↵er-

ent directions of propagation are possible depending on the sign of ` and m. This is an

illustration of the anisotropic propagation due to the vertical stratification. This remark

is particularly relevant here since one sees that the anisotropy is at the very origin of the

existence of beams for internal waves, the focus of this review.

The third remarkable property is that the dispersion relation features the angle of

propagation rather than the wavelength, emphasizing a clear di↵erence between internal

waves and surface waves. This is also a crucial property for this review since it will allow

us to define beams with a general profile, rather than with a single wavenumber.

2.3. Nonlinear Terms

2.3.1. Plane Wave Solutions. It is striking and pretty unusual that plane waves are solu-

tions of the inviscid nonlinear equation (6) even for large amplitudes. Indeed, the stream-

function of the plane wave solution is a Laplacian eigenmode, with r2 = �k2 . Con-

sequently, the first Jacobian term vanishes in Equation (6). Equation (4) leads therefore

to the so-called polarization relationship b = �
�
N2`/!

�
 ⌘ P , with P the polarization

prefactor. Consequently, the second Jacobian in (6) vanishes: J( ,P ) = 0. To conclude,

both nonlinear terms in Equation (6) vanish for plane wave solutions, that are therefore

solutions of the nonlinear equation, for any amplitude.

2.3.2. Internal Wave Beams. Since the frequency ! is independent of the wavenumber,

it is possible to devise more general solutions, time-harmonic with the same frequency !,

by superposing several linear solutions associated to the same angle of propagation, but

with di↵erent wavenumbers k (McEwan 1973; Tabaei & Akylas 2003). Introducing the

cross-beam direction ⌘ = x sin ✓ + z cos ✓, perpendicular to the direction of propagation

⇠ = x cos ✓ � z sin ✓ (see Figure 1) the plane wave solution can be written as

 (x, y, z, t) =  
0

ei`x+imz�i!t + c.c. =  
0

eik⌘ e�i!t + c.c. , (9)

since ` = k sin ✓ and m = k cos ✓. If one introduces Q(⌘) = ik 
0

eik⌘, one obtains the

velocity field u = Q(⌘)(cos ✓, 0,� sin ✓)e�i!t + c.c. and the buoyancy perturbation b =

�i(P/k)Q(⌘)e�i!t + c.c. .

One can actually obtain a wider class of solutions by considering an arbitrary complex

amplitude Q(⌘). Indeed, the fields u and b do not depend on the longitudinal variable ⇠.

Consequently, after the change of variables, the Jacobians, which read J( , b) = @⇠ @⌘b�
@⌘b @⇠ , simply vanish, making the governing equations linear. As discussed in Tabaei,

Akylas & Lamb (2005), note that uni-directional beams, in which energy propagates in

one direction, involve plane waves with wavenumbers of the same sign only.

Internal wave beam:
Superposition of
time-harmonic plane
waves with an
arbitrary profile in
the cross-beam
direction.

We see that the class of propagating waves that are solutions of the nonlinear dynamics

in a Boussinesq stratified fluid is much more general than plane wave solutions: there
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Seeking solutions of the form

We find that provided the spatial                           and temporal                                 
resonance conditions are satisfied, we get 

where

Koudella & Staquet JFM 548, 165 (2006).
Bourget, Dauxois, Joubaud, Odier, JFM 723, 1 (2013).

McEwan & Plumb, DAO 2, 83 (1977).
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terms, as well as the viscous terms and the temporal evolution of the amplitudes, one

recovers the polarization expression Rj = �(N2`j/!j) j and the dispersion relation !j =

N |`j |/
p
`2j +m2

j . This linear system is resonantly forced by the Jacobian nonlinear terms

on the right-hand side when the waves fulfill a spatial resonance condition

k
0

= k
+

+ k� (12)

and a temporal resonance condition

!
0

= !
+

+ !� . (13)

The Jacobian terms in Equations (10) and (11) can then be written as the sum of a resonant

term that will drive the instability, plus some unimportant non resonant terms. Introducing

this result into Equation (10), one obtains three relations between  j and Rj for each mode

exp[i(kj · r � !jt)] with j = 0,+ or �. One gets

R± =
1
i`±

⇥
k2

±( ̇± � i!± ±) + ⌫k4

± ± + ↵± 0

 ⇤
⌥
⇤
, (14)

where ↵± = (`
0

m⌥ � m
0

`⌥)(k
2

0

� k2

⌥). Here, one traditionally uses the “pump-wave”

approximation, which assumes that over the initial critical growth period of the secondary

waves, the primary wave amplitude,  
0

, remains constant and that the amplitude varies

slowly with respect to the period of the wave ( ̇j ⌧ !j j). Di↵erentiating the polarization

expression, cumbersome but straightforward calculations (Bourget et al. 2013) lead to first
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d ±

dt
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 ⇤
⌥ � ⌫

2
k2

± ±, (15)
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To conclude, the e↵ects of nonlinearities on plane waves, vertical modes or wavebeams

exhibit very peculiar properties. There are two important points to keep in mind. First,

a plane wave is solution of the full equation while, in general, the sum of two solutions is

not. The nonlinear terms are therefore essential to describe the collision of waves or the

reflection of a beam on a surface. This has been carefully considered in Tabaei, Akylas &

Lamb (2005). Second, identifying a solution does not mean that it is a stable one. This

remark is at the core of the present review: we will focus in the following on the behavior

of wave beams with respect to the triadic resonant and the streaming instabilities.

3. TRIADIC RESONANT INSTABILITY

3.1. Introduction

It was first realized fifty years ago that internal gravity plane waves are unstable to in-

finitesimal perturbations which grow to form temporal and spatial resonant triads (Davis

& Acrivos 1967; McEwan 1971; Mied 1976). This nonlinear instability produces two

secondary waves that extract energy from a primary one. Energy transfer rates due to this

instability are now well established for plane waves (Staquet & Sommeria 2002).

The instability was observed in several laboratory experiments (Benielli & Sommeria

1998; Clark & Sutherland 2010; Pairaud et al. 2010; Joubaud et al. 2012) and nu-

merical experiments on propagating internal waves (Koudella & Staquet 2006; Wienkers

2015) or reflecting internal tides on a horizontal or sloping boundary (Gerkema, Staquet &

Bouruet-Aubertot 2006; Pairaud et al. 2010; Zhou & Diamessis 2013; Gayen & Sarkar

2013). Oceanic field observations have also confirmed the importance of this instability,

especially close to the critical latitude, where the Coriolis frequency is half of the tidal

frequency (Hibiya, Nagasawa & Niwa 2002; MacKinnon et al. 2013; Sun et al. 2013).

Recent experiments by Bourget et al. (2013), however, followed by a simple model

and numerical simulations by Bourget et al. (2014) as well as a theory by Karimi &

Akylas (2014) have shown that finite-width internal gravity wave beams exhibit a much

more complex behavior than expected in the case of interacting plane waves. This is what

will be discussed in this section.

3.2. The simplest case of Plane Waves Solutions

3.2.1. Derivation of the Equations and Plane Waves Solutions. Looking for solutions

of the basic equations (4) and (5) as sum of three plane waves as follows b =P
j
Rj(t)e

i(kj ·r�!jt)+c.c. and  =
P

j
 j(t)e

i(kj ·r�!jt)+c.c., with j = 0 for the primary

wave and j = ± for the secondary ones, and denoting Ṙ the derivative of the amplitude R,

one gets (see for example Hasselman (1967))

X

j

[�k2

j ( ̇j � i!j j) + i`jRj � ⌫k4

j j ]e
i(kj ·r�!jt) + c.c. = �J(r2 , ) . (10)

X

j

[Ṙj � i!jRj � iN2`j j ]e
i(kj ·r�!jt) + c.c. = �J(b, ) , (11)

however, they play a pivotal role through the free surface boundary condition.
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however, N will be taken constant in the remainder of the paper. In some studies, to ease

greatly the theoretical analysis, this approximation that looks drastic at first sight can be

relaxed when N changes smoothly by relying on the WKB approximation.

The equations of motion can be written as a dynamical system for the perturbed buoy-

ancy field b = b
tot

� b
0

and the three components of the velocity field u = (ux,uy,uz):

r · u = 0, (1)

@tu+ u ·ru = � 1
⇢
ref

rp+ bez + ⌫r2u, (2)

@tb+ u ·rb+ uzN
2 = 0. (3)

with p(r, t) the pressure variation with respect to the hydrostatic equilibrium pressure

P
0

(z) = P
0

(0) � R z

0

⇢
0

(z0)gdz0, and ⌫ the kinematic viscosity. We have also neglected the

molecular di↵usivity, that would imply a term Dr2b in the r.h.s. of Equation (3), with

D the di↵usion coe�cient of the stratifying element (molecular di↵usivity for salt, thermal

di↵usivity for temperature). The importance of the dissipative terms with respect to the

nonlinear ones are described by the Reynolds UL/⌫ and the Peclet numbers UL/D, with U

and L typical velocity and length scales, or equivalently by the Reynolds number and the

Schmidt number ⌫/D. In many geophysical situations, both Reynolds and Peclet numbers

are large, and molecular e↵ects can be neglected at lowest order. In such cases, the results

do not depend on the Schmidt number. In laboratory settings, the Peclet is often also

very large, at least when the stratification agent is salt, in which case D ⇡ 10�9 m2·s�1.

However, the viscosity of water is ⌫ ⇡ 10�6 m2·s�1, and the corresponding Reynolds number

are such that viscous e↵ects can play an important role, as we will see later.

Let us first consider the simplest case of two-dimensional flow, which is invariant in the

transverse y-direction. The non-divergent two-dimensional velocity field is then conveniently

expressed in terms of a streamfunction  (x, z) as u = (@z , 0,�@x ). Introducing the

Jacobian J( , b) = @x @zb � @xb @z , the dynamical system (1), (2) and (3) is expressed

as

@tr2 + J(r2 , ) = �@xb+ ⌫r4 . (4)

@tb+ J(b, )�N2@x = 0. (5)

Di↵erentiating Equation (4) with respect to time and Equation (5) with respect to the

spatial variable x, and subtracting the latter from the former, one gets finally

@ttr2 +N2@xx = ⌫r4@t + @tJ( ,r2 ) + @xJ(b, ), (6)

describing the nonlinear dynamics of non-rotating non-di↵usive viscous stratified fluids in

two dimensions.

2.2. Linear Approximation

In the linear approximation, assuming vanishing viscosity, the right-hand side of Equa-

tion (6) immediately vanishes leading to the following wave equation for the streamfunction

@ttr2 +N2@xx = 0. (7)

This equation is striking for several reasons. First, its mathematical structure is clearly dif-

ferent from the traditional D’Alembert equation. Indeed, the spatial di↵erentiation appears
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[Ṙj � i!jRj � iN2`j j ]e
i(kj ·r�!jt) + c.c. = �J(b, ) , (11)

however, they play a pivotal role through the free surface boundary condition.

www.annualreviews.org

•
Instabilities of internal wave beams 7



at second order in both terms. Time-harmonic plane waves with frequency !, wavevector

k = (`, 0,m) and wavenumber k = |k| = (`2 +m2)1/2 are solutions of Equation (7), if the

dispersion relation for internal gravity waves

! = ±N
`
k
= ±N sin ✓, (8)

is satisfied. ✓ is the angle between wavenumber k and the vertical.

Plane wave solution:
 
0

ei(k·r�!t) + c.c.
where c.c. denotes
complex conjugate

The second important remark is that contrary to the usual concentric waves emitted

from the source of excitation when considering the D’Alembert equation, here four di↵er-

ent directions of propagation are possible depending on the sign of ` and m. This is an

illustration of the anisotropic propagation due to the vertical stratification. This remark

is particularly relevant here since one sees that the anisotropy is at the very origin of the

existence of beams for internal waves, the focus of this review.

The third remarkable property is that the dispersion relation features the angle of

propagation rather than the wavelength, emphasizing a clear di↵erence between internal

waves and surface waves. This is also a crucial property for this review since it will allow

us to define beams with a general profile, rather than with a single wavenumber.

2.3. Nonlinear Terms

2.3.1. Plane Wave Solutions. It is striking and pretty unusual that plane waves are solu-

tions of the inviscid nonlinear equation (6) even for large amplitudes. Indeed, the stream-

function of the plane wave solution is a Laplacian eigenmode, with r2 = �k2 . Con-

sequently, the first Jacobian term vanishes in Equation (6). Equation (4) leads therefore

to the so-called polarization relationship b = �
�
N2`/!

�
 ⌘ P , with P the polarization

prefactor. Consequently, the second Jacobian in (6) vanishes: J( ,P ) = 0. To conclude,

both nonlinear terms in Equation (6) vanish for plane wave solutions, that are therefore

solutions of the nonlinear equation, for any amplitude.

2.3.2. Internal Wave Beams. Since the frequency ! is independent of the wavenumber,

it is possible to devise more general solutions, time-harmonic with the same frequency !,

by superposing several linear solutions associated to the same angle of propagation, but

with di↵erent wavenumbers k (McEwan 1973; Tabaei & Akylas 2003). Introducing the

cross-beam direction ⌘ = x sin ✓ + z cos ✓, perpendicular to the direction of propagation

⇠ = x cos ✓ � z sin ✓ (see Figure 1) the plane wave solution can be written as

 (x, y, z, t) =  
0

ei`x+imz�i!t + c.c. =  
0

eik⌘ e�i!t + c.c. , (9)

since ` = k sin ✓ and m = k cos ✓. If one introduces Q(⌘) = ik 
0

eik⌘, one obtains the

velocity field u = Q(⌘)(cos ✓, 0,� sin ✓)e�i!t + c.c. and the buoyancy perturbation b =

�i(P/k)Q(⌘)e�i!t + c.c. .

One can actually obtain a wider class of solutions by considering an arbitrary complex

amplitude Q(⌘). Indeed, the fields u and b do not depend on the longitudinal variable ⇠.

Consequently, after the change of variables, the Jacobians, which read J( , b) = @⇠ @⌘b�
@⌘b @⇠ , simply vanish, making the governing equations linear. As discussed in Tabaei,

Akylas & Lamb (2005), note that uni-directional beams, in which energy propagates in

one direction, involve plane waves with wavenumbers of the same sign only.

Internal wave beam:
Superposition of
time-harmonic plane
waves with an
arbitrary profile in
the cross-beam
direction.

We see that the class of propagating waves that are solutions of the nonlinear dynamics

in a Boussinesq stratified fluid is much more general than plane wave solutions: there
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spontaneous emission of two secondary waves. The frequencies and wave vectors of these three waves are

related by the spatial, k
0

= k
+

+ k�, and the temporal, !
0

= !
+

+ !�, resonance conditions, where the

indices 0 and ± refer respectively to the primary and secondary waves.

In the inviscid case, the most unstable triad corresponds to antiparallel, infinitely long secondary wave

vectors associated with frequencies which are both half of the primary wave frequency: !
+

' !� ' !
0

/2.

Because of the direct analogy with the parametric oscillator, this particular case defines the Parametric

Subharmonic Instability (PSI). This special case applies to many geophysical situations, and especially for

oceanic applications.

In laboratory experiments, viscosity plays an important role and the two secondary wave frequencies are
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and 

No threshold for an internal plane wave.
Bourget, Scolan, Dauxois, Le Bars, Odier, Joubaud, JFM 759, 739 (2014).
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(a) Resonance locus for the unstable wavevectors (`
+

,m
+

) satisfying Equation (17) once the
primary wavevector k

0

=(`
0

,m
0

) is given. Two examples of vector triads (k
0

, k
+

, k�) are shown.
The dotted curve is defined by k

+

= k
0

. The solid green curves corresponds to the central branch,
while the dashed and dash-dotted black curves to the external branch. (b) and (c) Corresponding
growth rates �/max(�) as a function of the normalized wave vector modulus k

+

/k
0

. (b) presents
the inviscid case while (c) a viscous case corresponding to  

0

/⌫ = 100.
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expression, cumbersome but straightforward calculations (Bourget et al. 2013) lead to first

order to
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Di↵erentiating Equation (15), one gets
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2
(k2
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The general solution is  ±(t) = A
1,2 exp (�t) +B

1,2 exp (�0t), with � = �⌫(k2

+

+ k2

�)/4 +p
(⌫/4)2(k2

+

� k2

�)
2 + I

+

I�| 0

|2 and �0 < 0 < �.

In conclusion, a vanishingly small amplitude noise induces the growth of two secondary

waves by a triadic resonant mechanism. Since their sum gives the primary frequency (see

Equation (13)), !
+

and !� are subharmonic waves. The growth rate of the instability

depends on the characteristics of the primary wave, namely its wavevector, its frequency

and its amplitude  
0

, but also on the viscosity ⌫.

3.2.2. Triads, Resonance Loci and Growth Rates. Using the dispersion relation for internal

waves, the temporal resonance condition leads to (Bourget et al. 2013)

|`
0

|p
`2
0

+m2

0

=
|`

+

|p
`2
+

+m2

+

+
|`

0

�`
+

|p
(`

0

�`
+

)2 + (m
0

�m
+

)2
, (17)

whose solutions are presented in Figure 2a. Once the primary wavevector k
0

is defined,

any point of the solid curve corresponds to the tip of the k
+

vector, while k� is obtained

by closing the triangle. The choice between the labels + and - is essentially arbitrary and

this leads to the symmetry k ! k
0

� k in Figure 2a. Without loss of generality, we will

always call k
+

the largest wavenumber.
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Finite Width effects

the resonance locus and corresponds to an energy transfer towards smaller and larger

scales (represented by solid green curves in Figure 2).

Among the di↵erent possible solutions on the resonance locus, the one expected to be

seen experimentally or numerically is the one associated with the largest growth rate. In the

inviscid case, the most unstable growth rate occurs for k ! 1, with essentially k
+

' �k�,

and therefore !
+

= !� = !
0

/2. This ultraviolet catastrophe is healed in the presence of

viscosity, which selects a finite wavelength for the maximum growth rate (Hazewinkel &

Winters 2011) as shown in Figure 2b. For typical laboratory scale experiments, the values

of k
+

corresponding to significant growth rates are of the same order of magnitude as the

primary wavenumber k
0

, as can be seen in Figure 2c, with k
1

/k
0

' 1.5 and k
2

/k
0

' 2.3.

The fact that viscosity has a significant e↵ect on the selection of the excited resonant

triad, preventing any large wave number secondary wave to grow from the instability, has

been observed by Bourget et al. (2013) in laboratory experiments on wave beams. However,

they also found a di↵erent type of triads than those predicted by the previous theoretical

arguments. This will be discussed in more details in the following sections.

3.2.3. Amplitude Threshold for Plane Wave Solutions. The expression for the growth rate

� implies that the amplitude of the stream function has to be larger than the critical

value | c(`+,m+

)| = ⌫k
+

k�/(2
p
I
+

I�) | c(`+,m+

)| = ⌫k
+

k�/
p
4I

+

I� to get a strictly

positive growth rate (Koudella & Staquet 2006; Bourget et al. 2013). The threshold for

the instability is thus given by the global minimum of this function of several variables.

Let us focus on the particular case where k
+

tends to k
0

by considering the following

description of the wavevector components `
+

= `
0

(1 + µ
0

"↵) and m
+

= m
0

(1 + ") where

"⌧ 1, ↵ � 1, while " and µ
0

are positive quantities. Using the dispersion relation, the

temporal and spatial resonance conditions, Bourget et al. (2014) have shown that ↵ = 2 is

the only acceptable value to balance the lowest order terms. Plugging these relations into

the expression of I±, one gets I
+

= �`
0

m
0

"+ o(") and I� = �`
0

m
0

+ o(1), which leads to

| c| = p
" ⌫N/(2!

0

)+o("1/2). The minimum of this positive expression being zero, one gets

that there is no threshold for an infinitely wide wave beam, even when considering a viscous

fluid. Plane wave solutions are thus always unstable to this triadic resonant instability.

3.3. Why does the Finite Width of Internal Waves Beam Matter?

The above theory for the TRI does not take into account the finite width of the experimental

beam. Qualitatively, the subharmonic plane waves that are theoretically unstable in the

case of interacting plane waves can only extract energy from the primary wave if they

do not leave the primary beam before they can extract substantial energy (Bourget et al.

2014). The group velocity of the primary wave is aligned with the beam, but the group

velocity of the secondary waves are definitely not, and these secondary waves eventually

leave the primary wave beam, as emphasized by Figure 3. This is a direct consequence of

the dispersion relation that relates the direction of propagation to the frequency: a di↵erent

frequency, smaller for subharmonic waves, will lead to di↵erent angles, actually shallower.

Three comments are in order:

i) The angles between primary and secondary waves strongly influence the interaction

time, and thus the instability.

ii) Secondary waves with small wave vectors having a larger group velocity

cg,± = (N2 � !2

±)
1/2/k±, they leave the primary wave beam more rapidly and have less
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Secondary waves with small wave vectors (having a larger group 
velocity), leave the primary wave beam more rapidly

c+g
c−g
and cϕ. (b) Geometry of an uniform (along ξ) internal wave beam inclined at an angle θ to
the horizontal. The beam profile varies in the cross-beam η direction, and the associated

flow velocity is in the along-beam direction ξ. The transverse horizontal direction is denoted
by y.
c+g
c−g
and cϕ. (b) Geometry of an uniform (along ξ) internal wave beam inclined at an angle θ to
the horizontal. The beam profile varies in the cross-beam η direction, and the associated

flow velocity is in the along-beam direction ξ. The transverse horizontal direction is denoted
by y.

? were studying near-critical reflection of a finite amplitude internal wave on a slope to
heal the singularity occurring in the solution of ?. Using matched asymptotic, they took

a distinguished limit in which the amplitude of the incident wave, the dissipation, and the

departure from criticality are all small. At the end, although the reconstructed fields do
contain nonlinearly driven second harmonics, they obtained the striking and unusual result

that the final amplitude equation happens to be a linear equation. The underlying reason
was already this Jacobi identity.1

To conclude, the effects of nonlinearities on plane waves, vertical modes or wavebeams

1Studying the mechanism of superharmonic generation, ? reported recently another situation
for which the nonlinear terms vanish in the domain bulk. Interestingly, however, they play a pivotal
role through the free surface boundary condition.
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Akylas & Lamb (2005), note that uni-directional beams, in which energy propagates in

one direction, involve plane waves with wavenumbers of the same sign only.Internal wave beam:
Superposition of
time-harmonic plane
waves with an
arbitrary profile in
the cross-beam
direction.

We see that the class of propagating waves that are solutions of the nonlinear dynamics

in a Boussinesq stratified fluid is much more general than plane wave solutions: there
is a whole family of solutions corresponding to uniform plane waves in the longitudinal

direction ξ, but with a general profile in the cross-beam direction η, as represented in

Figure 2.3.2. Internal wave beams, time monochromatic in time, are very important
cases.

c+g
c−g
c0g
and cϕ. (b) Geometry of an uniform (along ξ) internal wave beam inclined at an angle θ to
the horizontal. The beam profile varies in the cross-beam η direction, and the associated

flow velocity is in the along-beam direction ξ. The transverse horizontal direction is denoted

by y.
c+g
c−g
c0g
and cϕ. (b) Geometry of an uniform (along ξ) internal wave beam inclined at an angle θ to

the horizontal. The beam profile varies in the cross-beam η direction, and the associated

flow velocity is in the along-beam direction ξ. The transverse horizontal direction is denoted
by y.

Tabaei & Akylas (2003) have generalized those results by computing asymptotic solu-

tions for a slightly viscous nonlinear wave beam with amplitude slowly modulated along ξ

6 Dauxois et al.
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d ±

dt
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Energy approach



q E pur si muove! (and yet it moves!):

Rotation reducing the ability of subharmonic waves to escape,
=> it reinforces the instability

Ø Experiments: Maurer, Joubaud & Odier JFM (2016).
Ø Theory: Karimi & Akylas PR Fluids (2017).

q Numerical simulations: Absolute and convective instability: 
Ø Lerisson’s PhD thesis (2017)
Ø Lerisson & Chomaz PR Fluids (2018)

q Theory: Theoretical prediction: Karimi & Akylas JFM (2014).

Prolongations
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Energy cascade in internal wave attractors
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Internal Wave Attractor

Internal wave attractor which corresponds to the existence of a limit cycle, 
depending on the geometrical parameters (Maas et al., Nature 1997).

Theoretical prediction

Maas
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Internal Wave Attractor
Experimental setup:

2D flow

Generator profile: ⌘(z, t) = a cos(⇡z/H) cos(!t)



Davis      Paillat

Internal Wave Attractor
Experimental result:



Balance between viscous damping and focusing.
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Instability in internal wave attractors for large forcing

Scolan, Ermanuyk, Dauxois, Phys. Rev. Lett. 110, 234501 (2013).



Model: Navier-Stokes in Boussinesq approximation + continuity + salt transport
Method: spectral elements 2D and 3D, code Nek5000 (Fischer & Ronquist 1994)
BC: no-slip at rigid walls, stress-free at free surface

Numerical Calculations

Brouzet, Sibgatullin, Scolan, Ermanyuk, Dauxois JFM (2016)
Internal wave attractors examined using laboratory experiments and 3D numerical simulations
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attractor amplitude

Time-frequency diagrams:
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What is beyond internal wave attractor?
Is this wave turbulence?

Well developed instability in a wave attractor



Intermediate Forcing

Wave turbulence?
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Mixing !

cf. Yarom & Sharon, Nature Physics 2014

Cascade B

Cascade C
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Large Forcing
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Brouzet, Ermanyuk, Joubaud, Sibgatullin, Dauxois, EPL 113, 44001 (2016)



Horizontal vorticity:

Gradient Richardson number: 

Modified Richardson number:

Extension of the  Miles-Howard condition

Mixing at

MixingMixing



whole-field horizontal vorticity PDF

Statistics of Mixing events



q Triadic Resonant Instability: Direct and Inverse transfers occur simultaneously

q Streaming instability (mean flow generation): Inverse transfer
(waterfall rather than a cascade)



S()

injection dissipation

Fate of Internal Tides

q Internal wave attractor: Good experimental set-up to study Wave-turbulence
Abyssal mixing
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