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A place on earth more awesome
than anything in space.
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» The deep ocean

» The deep circulation

» The sinking branch: deep convection

» The upwelling branch: Stommel-Arons theory

» The upwelling branch: Munk’s “Abyssal Recipes”

» The deep and abyssal ocean circulations



The deep ocean
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Potential temperature — WOCE section P15, 165W
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The deep circulation



Henri Ellis (1751)

“The cold increased regularly, in proportion to the depths, till it
descended to 3900 feet: from whence the mercury in the thermometer
came up at 53 degrees Fahrenheit (I | degrees Celsius); and tho' |
afterwards sunk it to the depth of 5346 feet, that is a mile and 66
feet, it came up no lower.”

This experiment, which seemed at first but mere food for curiosity,
became in the interim very useful to us. By its means we supplied our
cold bath, and cooled our wines or water at pleasure; which is vastly
agreeable to us in this burning climate.”



Benjamin Thomson
Count Rumford of the Holy Roman Empire
(1753-1814)

On the Propagation of Heat in Fluids
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Where does water sink?




Deep convection in the ocean occurs

* when the air-sea fluxes act to increase surface density
* when the ocean stratification is weak

These conditions are realized in sub polar gyres

* Nordic Seas of the North Atlantic

* Weddell and Ross Sea around Antarctica
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Figure 4. Annual air-sea density fluxes, contour interval 2 X 10° kg m?s’'.



Deep convection in the ocean occurs

* when the air-sea fluxes act to increase surface density
* when the ocean stratification is weak

These conditions are realized in sub polar gyres
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Deep convection in the ocean occurs

* when the air-sea fluxes act to increase surface density
* when the ocean stratification is weak

These conditions are realized in sub polar gyres

 Greenland and Labrador Seas in the North Atlantic

* Weddell and Ross Sea around Antarctica
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Figure 4. Annual air-sea density fluxes, contour interval 2 X 10° kg m?s’'.



Where does water rise!

Stommel-Arons theory




Uniform upwelling

Ocean surface
Warm upper ocean Cold polar waters
w = Wy
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Uniform upwelling

Thermocline

A
Convection.
Cold abyss Mass source
H for lower layer.
w=0
Equator Pole
Fig. 21.12 (Vallis, 2017)
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Upwelling in Pacific: wg = 0 — ~10""'m s~ ~ 3m year™
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* Planetary geostrophic equations

- geostrophic balance
—f?] — —OUgp
+fu=— yP

with

- mass conservation

O, u~+ 0,v+ 0, w =20

* Vorticity equation

Bv+ f(Ozu+ 0yv) =0
Bv = fo,w

 Taking the vertical integral

BvH = fwgy — v =

J=Jo+ By

~ 2% 10 *m s~
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Fig. 21.14 (Vallis, 2017)
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Vertically integrated circulation

Equator (ys)




Global deep circulation




Western Boundary Current

found below Gulf Stream!
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LETTERS TO THE EDITORS

J. C. SwarLow

National Ingtitute of Oceanography,
Wormley, Godalming,

Surrey.

L. V. WoRTHINGTON

Woods Hole Oceanographic Institution,
Woods Hole, Maes.

May 13.

Measurements of Deep Currents in the
Western North Atlantic

Tan depth of the level of no motion has been
a controversial matter among occanngraphers for
many yewrs. In caleulating eurrents from cbeerved
presare cistebutions, it has often besn sssumed that
the motion of the deep water mnst bha g0 slow a8 o
ho nogligiblet®.  On the other hand, Defant® and

Wiisr! have arrived ot somaistent
pactuces ol the circulation in tho
Atlantic using a surlace of o
motiom  at miermediate  depths.
More recently, Stommel* has sng-

curcent alvnyg the western boundory
of the Atlanue, asccialed with an
intirmal sharmohaline mode of cic.
culation, in tho opposite diroction

w0 the GAul[ Stresn,

gerted that tacre should be a desp

Nine floats were followed, of which seven were in
deep south-going water. The measurcments lasted
for periods of 1-4 days, with some overlaps when
more than one float was being followed. Three floats
st 2,600 metres moved in directions between south
and south-west with mean velocitics botween 2-8
and 95 am./sec., and four floats at 2,800 motres
depth moved almost due south with velocities of
97-17+4 em.jsec. Additional evidence for a south.
going deep current was obtained by A, S, ton,
who took underwater photographs! of the deflexion
of a ball sus on & string, only 50 cm. above
the sea floor, in & depth of 3,200 metres. A southward
mogmmt of about 6 cm.lsec. was found st that
depth.




Western Boundary Current
found below Gulf Stream!

Grand Benks: avg HIO & IFM (geost-opty above 300m)
Py -49 Longoce 48

Distancs (km)
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Where does water rise!

Munk’s Abyssal Recipes



Depth [m]

Abyssal recipes
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Depth [m]

Abyssal recipes

WaALTER H. MUNK* // — dA = // 82 (HJT 82) dA

(Received 31 January 1966)
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® Munk found that vertical profiles of | o T T
density and '“C in abyssal Pacific are - |
consistent with |-D balance (L i

dp 52 9%p _
(9 < 0z 022 2t .;:2-'-/{'/
— b, .=
wo é i .,‘,E;’/' X
p(z) x exp | —z £ | # &
RT g3 {"-"
® Least-square curve field yield !
41r
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R sU: Munk (1966)
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o Upwe”mg in Pacific potential temperature [degrees)
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A 1.6 x 1014m?2



® Munk found that vertical profiles of | o T T
density and '“C in abyssal Pacific are - |
consistent with |-D balance (L i
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® Least-square curve field yield !
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® Turbulent diffusivity potential temperature [degrees]
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e Mixing in the deep ocean below 1000 m is turbulent
k ~ 107* m?s™t > molecular diffusion
* Turbulent mixing is typically associated with breaking internal waves

R — N*? | large for geostrophic motions
~ |0,ul2 | O(1) for internal waves

Smyth et al. (2001)



Abyssal circulation and Kr

Parameter Sensitivity of Primitive Equation Ocean General Circulation Models
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Observations of abyssal

circulation:WOCE era



Abyssal overturning circulation

Lumpkin and Speer (2007)



Abyssal overturning circulation
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Abyssal overturning circulation
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» The deep ocean circulation is fed by deep convection
— in the North Atlantic
— around Antarctica

» The deep waters return to the surface
— pulled by winds above 2000m the Southern Ocean
— through mixing in the abyssal Atlantic, Indian and Pacific

Oceans
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