Deep Ocean Mixing

Raffaele Ferrari Earth, Atmospheric and Planetary Sciences, MIT

Les Houches, August 2017

A place on earth more awesome than anything in space.

Outline

- Turbulence and diapycnal mixing
- Methods used to estimate ocean diapycnal mixing
 - temperature variance budget
 - turbulent kinetic energy budget
 - tracer release experiments
- Direct estimates of ocean diapycnal mixing
 - North Atlantic (shallow)
 - Brazil Basin (deep)
 - Drake Passage (mid-depth)

Turbulence and mixing

Turbulence in ocean interior

Subinertial motions have large *Ri* and small *Ro* Superinertial motions can develop small *Ri* and large *Ro*

Breaking internal waves

Turbulent buoyancy fluxes

Boussinesq Equations

$$\partial_{t} \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + f \hat{\mathbf{z}} \times \mathbf{u} = -\rho_{0}^{-1} \nabla p + b \mathbf{z} + \nabla \cdot (\nu \nabla \mathbf{u})$$

$$\nabla \cdot \mathbf{u} = 0,$$

$$\partial_{t} \theta + (\mathbf{u} \cdot \nabla) \theta = \nabla \cdot (\kappa_{\theta} \nabla \theta),$$

$$\partial_{t} S + (\mathbf{u} \cdot \nabla) S = \nabla \cdot (\kappa_{S} \nabla S),$$

$$b = g \alpha (\theta - \theta_{0}) - g \beta (S - S_{0}), \quad \rho = \rho_{0} \left(1 - g^{-1} b \right)$$

 $\implies \partial_t b + (\mathbf{u} \cdot \nabla) b = \nabla \cdot (\kappa_\theta g \alpha \nabla \theta - \kappa_S g \beta \nabla S)$

Reynolds decomposition

Buoyancy budget $\partial_t b + (\mathbf{u} \cdot \nabla) b = \nabla \cdot (\kappa_\theta g \alpha \nabla \theta - \kappa_S g \beta \nabla S)$

Subinertial buoyancy budget

$$\begin{aligned} \partial_t \bar{b} + (\bar{\mathbf{u}} \cdot \nabla) \bar{b} &= -\nabla \cdot (\overline{\mathbf{u}' b'} - \kappa_\theta g \alpha \nabla \bar{\theta} + \kappa_S g \beta \nabla \bar{S}) \\ &\simeq -\nabla \cdot \overline{\mathbf{u}' b'} \\ &\simeq -\partial_z \overline{w' b'} \end{aligned}$$

Measurements of turbulent buoyancy fluxes

I. Direct eddy correlations

- Compute w and b (θ and S)
- High pass signals to extract super-inertial signals w' and b'
- Compute correlations by averaging over time $\overline{w'b'}$

Fleury and Lueck, 1994

- Challenge I: measure w and b (θ and S) at same location from stable platform
- Challenge II : average over long enough time

II. Temperature variance budget

• Potential temperature budget

$$\partial_t \theta + (\mathbf{u} \cdot \nabla) \theta = \nabla \cdot (\kappa_\theta \nabla \theta)$$

• Mean and eddy potential temperature budget

$$\partial_t \bar{\theta} + (\bar{\mathbf{u}} \cdot \nabla) \bar{\theta} = \nabla \cdot (-\overline{\mathbf{u}'\theta'} + \kappa_\theta \nabla \bar{\theta})$$
$$\partial_t \theta' + ((\bar{\mathbf{u}} + \mathbf{u}') \cdot \nabla) \theta' + \mathbf{u}' \cdot \nabla \bar{\theta} = \nabla \cdot (\overline{\mathbf{u}'\theta'} + \kappa_\theta \nabla \theta')$$

• Potential temperature variance budget

$$\frac{1}{2}\partial_t\overline{\theta'^2} + \frac{1}{2}\nabla\cdot\left[\overline{(\bar{\mathbf{u}}+\mathbf{u}')\theta'^2} - \kappa_\theta\nabla\overline{\theta'^2}\right] = -\overline{\mathbf{u}'\theta'}\cdot\nabla\overline{\theta} - \kappa_\theta\overline{|\nabla\theta'|^2}$$

II. Temperature variance budget

• Assuming that turbulence in stationary, homogeneous and isotropic:

$$\frac{1}{2}\partial_{t}\overline{\theta'^{2}} + \frac{1}{2}\nabla \cdot \left[\overline{(\bar{\mathbf{u}} + \mathbf{u}')\theta'^{2}} + \kappa_{\theta}\nabla\overline{\theta'^{2}}\right] = -\overline{\mathbf{u}'\theta'} \cdot \nabla\overline{\theta} - \kappa_{\theta}\overline{|\nabla\theta'|^{2}} - 3\kappa_{\theta}\overline{(\partial_{z}\theta')^{2}}$$
Example that isotropy isotropy

- Assuming that $\nabla ar{ heta} \simeq \partial_z ar{ heta} \; {\hat{f z}}$

$$\overline{w'\theta'} \simeq -\frac{3\kappa_{\theta}\overline{(\partial_z\theta')^2}}{\partial_z\overline{\theta}} \equiv -\frac{1}{2}\frac{\chi}{\partial_z\overline{\theta}}$$

• Assuming that temperature dominates buoyancy gradients

$$\overline{w'b'} \simeq g \, \alpha \, \overline{w'\theta'} \simeq -\frac{g\alpha}{2} \frac{\chi}{\partial_z \bar{\theta}}$$

(Osborn-Cox, 1972)

Microstructure thermistors

High Resolution Profiler

Microstructure thermistors

Temperature gradient spectra (χ)

III. Kinetic energy budget

• Full turbulent kinetic energy budget

$$\begin{split} \frac{1}{2}\partial_t \overline{|\mathbf{u}'|^2} &+ \frac{1}{2}\nabla \cdot \left[\overline{(\bar{\mathbf{u}} + \mathbf{u}')|\mathbf{u}'|^2} - \nu \nabla \overline{|\mathbf{u}'|^2} + \rho_0^{-1} \overline{p'w'}\right] = \\ &= -\overline{\mathbf{u}'\mathbf{u}'} \cdot \nabla \overline{\mathbf{u}} + \overline{w'b'} - \nu \overline{|\nabla \mathbf{u}'|^2} \end{split}$$

• Turbulent kinetic energy budget for stationary, homogeneous, isotropic turbulence

$$-\overline{\mathbf{u'u'}} \cdot \nabla \overline{\mathbf{u}} + \overline{w'b'} \simeq \frac{15}{2} \nu \overline{(\partial_z u')^2}$$

- Assuming that $\nabla \bar{\mathbf{u}} \simeq \partial_z \bar{\mathbf{u}}_h \ \hat{\mathbf{z}}$ $-\overline{\mathbf{u}'_h w'} \cdot \partial_z \bar{\mathbf{u}}_h + \overline{w' b'} \simeq \frac{15}{2} \nu \overline{(\partial_z u')^2}$
- Introducing the flux Richardson number (Osborn, 1981)

$$Ri_f \equiv \frac{\overline{w'b'}}{\overline{\mathbf{u}'_h w'} \cdot \partial_z \bar{\mathbf{u}}_h} \qquad \Longrightarrow \qquad \overline{w'b'} \simeq -\frac{Ri_f}{1 - Ri_f} \frac{15}{2} \overline{(\partial_z \mathbf{u}')^2} \equiv -\Gamma\epsilon$$

Microstructure shear probes

High Resolution Profiler

Microstructure shear probes

Turbulent kinetic energy dissipation (ϵ)

Mixing coefficient

Temperature variance budget: $\overline{w'b'} = -\frac{g\alpha}{2}\frac{\chi}{\partial_z\bar{\theta}}$ Turbulent kinetic energy budget: $\overline{w'b'} = -\Gamma\epsilon$

$$\implies \Gamma \epsilon = \frac{g\alpha}{2} \frac{\chi}{\partial_z \bar{\theta}} \qquad \implies \Gamma = \frac{g\alpha}{2\partial_z \bar{\theta}} \frac{\chi}{\epsilon} = 0.1 - 0.3$$

Gregg et al., 2018

Table 4 – $\gamma_{\chi\varepsilon}$ in pychoclines from direct χ_{T} and ε measurements, mostly by profiling				
Location	R_{ρ}	Reb	Г	Reference
Rockall Trough	>7	300-3,000	0.05-0.32	Oakey 1982, 1985 ^a
California Current	Variable		0.18 ^b	Gregg et al. 1986
Equator, 140°W ^c	Variable	1-106	0.12 ^b	Peters & Gregg 1988
Equator, $140^{\circ}W^{\circ}$		_	$0.12 - 0.48^{d}$	Moum et al. 1989
California Current		_	0.05°	Yamazaki & Osborn 1993
Admiralty Inlet	0.05	$\sim 2 \times 10^4$	0.58 ^f	Seim & Cregg 1004
Tidal channel		_	0.25, 0.23 ^g	Gargett & Moum 1995
Equator, $140^{\circ} W^{h}$		$20 - 10^{5}$	0.14 ^h	Peters et al. 1995
Northeast Pacific			≈ 0.3 0.4	Moum 1996
Northeast Atlantic	-0.8 to 5	30 1,00 0	0.14, 0.21 ¹	Ruddick et al. 1997
Northeast Atlantic ^j	-100 to -1	_	0.16 ± 0.04	St. Laurent & Schmitt 1999
	>1	_	0.2-0.3	
Monterey shelf ^k			0.0022	Cregg & Horne 2009
Equator, 80.5°Ek			<:0.02	Pujima et al. 2015
A 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				I

Eddy diffusivities

Diffusive closure: $\overline{w'b'} = -K_T \partial_z \overline{b}$

Temperature variance budget

$$\overline{w'b'} = -\frac{g\alpha}{2}\frac{\chi}{\partial_z\bar{\theta}} \implies K_T^{\chi} = \frac{1}{2}\frac{\chi}{(\partial_z\bar{\theta})^2}$$

Turbulent kinetic energy budget

$$\overline{w'b'} = -\Gamma\epsilon \quad \Longrightarrow \quad K_T^{\epsilon} = \Gamma \frac{\epsilon}{\partial_z \overline{b}}$$

IV. Tracer release experiments

Lateral stirring by geostrophic motions

Vertical mixing by breaking waves

$$\partial_t \bar{c} + \bar{\mathbf{u}} \cdot \nabla \bar{c} = -\nabla \cdot \overline{\mathbf{u}' c'} \\ = \nabla \cdot K_T \nabla \bar{c}$$

IV. Tracer release experiments

• The eddy diffusivity K_T is inferred from the evolution of the tracer z-moments

$$Z_1 \equiv \frac{\langle zc \rangle}{\langle c \rangle}, \qquad Z_2 \equiv \frac{\langle (z - Z_1)^2 c \rangle}{\langle c \rangle}, \qquad \langle \cdot \rangle = \iiint \cdot dV$$

• Assuming that

- isopycnals are flat (can be relaxed using isopycnal coordinates)
- the stirring velocity \overline{u} is along isopycnals ($\overline{w}=0$)
- K_T is independent of depth z

$$\frac{dZ_1}{dt} = 0$$
$$\frac{dZ_2}{dt} = 2\frac{\langle K_T c \rangle}{\langle c \rangle}$$

North Atlantic Tracer Release Experiment (NATRE)

NATRE

Tracer release (Ledwell et al., 1993)

HRP profiles (Toole et al., 1994)

Three methods are consistent

Tracer release (Ledwell et al., 1993)

 $K_T^{tracer} = (1.1 \pm 0.2) \times 10^{-5} \mathrm{m}^2 \mathrm{s}^{-1}$

$$K_T^{\chi} = \frac{1}{2} \frac{\chi}{(\partial_z \bar{\theta})^2} = (1.0 \pm 0.2) \times 10^{-5} \mathrm{m}^2 \mathrm{s}^{-1}$$
$$K_T^{\epsilon} = 0.25 \frac{\epsilon}{\partial_z \bar{b}} = (1.2 \pm 0.2) \times 10^{-5} \mathrm{m}^2 \mathrm{s}^{-1}$$

Contamination of χ

Ferrari and Polzin, 2005

Brazil Basin Tracer Release Experiment (BBTRE)

BBTRE

Tracer release (Ledwell et al., 2000)

HRP profiles (Polzin et al., 1997)

K_T is bottom enhanced

$$K_T^{tracer} = \frac{1}{2} \frac{Z_2|_{t=1 \text{ year}} - Z_2|_{t=0}}{1 \text{ year}} = (3-8) \times 10^{-4} \text{m}^2 \text{s}^{-1}$$
$$K_T^{\epsilon} = (2 \pm 1) \times 10^{-4} \text{m}^2 \text{s}^{-1}$$

Ledwell et al., 2000

K_T is bottom enhanced

Polzin et al., 1997

Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES)

DIMES

Tracer estimate of κ

• Passive tracer (CF₃SF₅) was released at 1500m depth, 2000m above seafloor

Upstream of Drake Passage between transects (a) and (d) $K_T^{tracer} = \frac{1}{2} \frac{Z_2|_b - Z_2|_{\star}}{2 \text{ years}} \simeq 2 \times 10^{-5} \text{m}^2 \text{s}^{-1}$

> Downstream of Drake Passage between transects (d) and (f)

$$K_T^{tracer} = \frac{1}{2} \frac{Z_2|_f - Z_2|_d}{3 \text{ months}} \simeq 3 \times 10^{-4} \text{m}^2 \text{s}^{-1}$$

Microstructure estimate of K_T

- Upstream of Drake Passage K_T^{tracer} and K_T^{ϵ} are similar
- Downstream of Drake Passage K^ϵ_T at mean depth of tracer is an order of magnitude smaller that K^{tracer}_T

Mashayek, Ferrari et al., 2017

Modeling approach

- MIT general circulation model of a 1400x400 km patch of Scotia Sea
- Resolution of 500-600 m, 100 vertical levels (30 m resolution at tracer depth)
- Model forced at boundaries with a coarser resolution patch of ACC constrained to observations (Tulloch, Ferrari et al., 2014)
- Smith and Sandwell topography at one minute (1/60th of degree)
- Vertical profile of K_T from microstructure profile imposed everywhere as a function of height above the bottom

Mashayek, Ferrari et al., 2017

Tracer evolution

- Tracer is released along western boundary of domain based on sampling of real tracer along that line
- Movie shows that tracer is
 - stirred laterally by geostrophic eddies toward seamounts/ridges
 - mixed vertically by enhanced K_T next to seamounts/ridges

Numerical estimate of K_T tracer

• We can estimate the diffusivity experienced by the tracer as

$$\bar{K} \equiv \frac{\int \int \int K_T c \, \mathrm{d}V}{\int \int \int c \, \mathrm{d}V}$$

Mashayek, Ferrari et al., 2017

Numerical estimate of K_T tracer

- Panel I: distribution of tracer peaks ~2300 m above seafloor and decays below
- Panel 2: profile of K_T increases toward seafloor
- Panel 3: increase of K_T is so large that estimate of \overline{K} is dominated by integral over bottom 1000 m
- Mixing occurs when tracer is within 1000 m of seafloor

Mashayek, Ferrari et al., 2017

Numerical estimate of K_T tracer

- Tracer tends to accumulate over remounts and ridges where mixing is strong
 - velocities are weaker close to seafloor
 - bottom enhanced mixing drives tracers toward the seafloor
 - other reasons?

Numerical estimate of K_T ^{tracer}

- Simply averaging along density surfaces gives little enhancement (mixing hotspots are too rare)
- Accumulation of tracer near topography is crucial to explain large K_T in deep ocean (hotspots trap tracer)

Conclusions

- $\blacktriangleright \ K^{\epsilon}_T = \Gamma \epsilon / \partial_z \bar{b}$ increases toward rough seafloor
- $\blacktriangleright \ \overline{w'b'} = -\Gamma \epsilon$ increases in magnitude toward rough seafloor
- mixing is confined within a few hundred meters of seafloor

Waterhouse et al., 2014

Conundrum

- $\overline{w'b'} = -\Gamma\epsilon$ increases in magnitude toward rough seafloor
- mixing drives sinking, not upwelling of ocean waters

