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 Hamilton’s equations for a canonical system:
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* For a Newtonian potential system, we get Newton’s second
law:
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Conservation of energy follows:
(repeated indices summed)




* The symplectic formulation of Hamiltonian dynamics can be

generalized to other J, which have to satisfy certain
mathematical properties

Among these is skew-symmetry, which guarantees energy
conservation:
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The canonical J is invertible. If J is non-invertible, then
Casimirs are defined to satisfy
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Casimirs are invariants of the dynamics since
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Example of a non-canonical Hamiltonian representation:

Euler’s equations for a rigid body. The dependent variables
are the components of angular momentum about principal
axes, and the total angular momentum is a Casimir invariant.

Cyclic coordinates: e.g. rotational symmetry implies
conservation of angular momentum
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a—qi—o=> 1 =0  foragiveni

More generally, the link between symmetries and
conservation laws is provided by Noether’s theorem:

Given a function F(u), define dru; = g;(0F /ou;)
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and hence  ésH =0 if and only if dF/dt =0

Casimir invariants are associated with ‘invisible’ symmetries
since

Example: rigid body

— In canonical coordinates, rotational symmetry is explicit
and leads to angular momentum conservation through
Noether’s theorem

— In Euler’s equations, angles have been eliminated and the
rotational symmetry is now invisible; thus angular
momentum (which is still conserved) comes in as a Casimir



