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‘The question is,” said Alice, ‘whether you can make words mean different
things.’
‘The question is,” said Humpty Dumpty, ‘which is to be master — that’s
all.’
— Carroll (1871)




Barotropic beta-plane: f = f, + By (y represents latitude)

0
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(N.B. Need to have L << f,/B)
Linearize about a constant zonal flow U:
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These are Rossby waves (note unidirectional!)

— Account for stationary and low-frequency flow structures in
the atmosphere and ocean

— Also are the building blocks of synoptic-scale eddies
(macroturbulence), though are not linear waves in this case



* Schematic of Rossby-wave propagation

An undulation in the PV contour (with constant { + By, where
( is vorticity) induces { < 0 north of the rest positionand (>0
south of the rest position, which act constructively in inducing
a velocity field that moves the undulation left (to the west)
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e Barotropic dynamics is a Hamiltonian system

5H = 6//%|V¢|2dxdy

—> 0H/dw = =y
(assuming boundary

— //{v. (WoVyr) —ydw} dx dy terms vanish)

* Functional derivatives are just the infinite-dimensional
analogue of partial derivatives; they can reflect non-local
properties



Barotropic dynamics can be written in symplectic form as:
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The Casimir invariants are:

C= // C(w)dxdy with o _ C'(w)
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and correspond to Lagrangian conservation of vorticity

Symmetry in x and conservation of x-momentum:
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Disturbance invariants: arguably the most powerful
application of Hamiltonian geophysical fluid dynamics

Ambiguities about the energy of a wave...
Ambiguities about the momentum of a wave...

If u=U is a steady solution of a Hamiltonian system, then

oH

—_— =0
ou u=U

For a canonical system, Jis invertible so dH/ou=0atu="U.
* Hence the disturbance energy is quadratic

But for a non-canonical system, this is not true and the
disturbance energy is generally linear in the disturbance

* Not sign-definite
e Cannot define stability, normal modes, etc.
* Leads to concept of pseudoenergy



 Pseudomomentum: In a similar manner, if a basic state u=U is
independent of x (i.e. is invariant with respect to translation
in x), then by Noether’s theorem,

~

L .
dU/x =0 implies ]—,E =0
ou |, _u

which implies 6(M +C)=0atu=U for some Casimir C

A= (M+C)u] — (M +C)[U] isthen both conserved and

(pseudomomentum) ~ duadratic in the disturbance

 Example: Barotropic flow on the beta-plane
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* Consider disturbances to an x-invariant basic state g,(y)
I(M+C)=0atg=gqo implies C(qo)=—y



This is analogous to the formula for APE, and similarly,

a= [[{= [ v +a) - vianida axay

where Y(go(y)) = y. which is negative definite for dgo/dy > 0

Small-amplitude approximation: _ 9~ ‘{0) ,\
2(dqo/dy)

If g, is defined to be the zonal mean, then ¢, = Z] q'=q —c_j
?

23,

Exactly the same form applies to stratified QG flow, where the

negative of this quantity is known as the Eliassen-Palm (E-P)
wave activity

and the zonal mean of this expression becomes -

N.B. The sign of this quantity corresponds to the sign of the
intrinsic frequency of Rossby waves (negative if dgy/dy > 0)



* Relationship between pseudomomentum and momentum:
consider the zonally averaged zonal momentum equation for

the barotropic beta-plane:
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* The linearized potential-vorticity equation is
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(Taylor identity)



Stratified QG dynamics: zonal-wind tendency equation,
temperature tendency equation, and thermal-wind balance
together imply
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So it’s the same physics, but the zonal-wind response to
mixing of potential vorticity is now spatially non-local (the
Eliassen balanced response): follows from PV inversion

The pseudomomentum conservation law takes the local form
(with S being a source/sink)

A i
c,)f +V-F =5 V-F=-v¢q
‘Jl
ol H? 02 9% 10A -
() = = o= (2
o) "oV =5V E =55

So mean-flow changes require wave transience or non-
conservative effects (non-acceleration theorem)



In the atmosphere, we can generally assume that ¢, >0 since g
is dominated by 8

Hence A < 0; Rossby waves carry negative pseudomomentum

Where Rossby waves dissipate, there must be a convergence of
negative pseudomomentum, hence a negative torque

Conservation of momentum implies a positive torque in the
wave source region

This phenomenon is seen
in laboratory rotating-
tank experiments

A prograde jet emerges
from random stirring,
surrounded on either
side by retrograde jets
(seen in distortion of dye)

(Whitehead 1975 Tellus)




In the atmosphere, synoptic-scale Rossby waves are generated by
baroclinic instability, hence within a jet region

Flux of negative pseudomomentum out of jet corresponds to an
upgradient flux of momentum into the jet: “eddy-driven jet”

For Rossby waves, sgn(cgy) = sgn(—u/v’)
Also explainable

by downgradient
PV mixing

Rossby waves

N
break & dissipate ~ Momentum
divergence

= Momentum
7 oonvergence

Stirring

Rossby waves Momentum

break & dissipate div;rgenoe

Vallis (2006) zonal velodity



e In fact the wave propagation is up and out (generally
equatorward), as seen in these ‘baroclinic life cycles’
showing baroclinic growth and barotropic decay (Simmons &
Hoskins 1978 JAS)

E-P flux (arrows) and Deceleration du/dt Acceleration
divergence (contours)
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The first analysis of EP flux divergence using atmospheric data
showed two regions of convergence in the upper troposphere
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* Small changes in the upper tropospheric zonal winds caused
the baroclinic life cycle to decay instead in the midlatitude
middle troposphere, reproducing the other observed feature

EP fluxes at Day 8 “Lc2”
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The implication
is that the
atmosphere
exhibits both
regimes from
time to time



* The observed breaking of synoptic-scale waves occurs in
nonlinear critical layers

— The subtropical critical layer in the upper troposphere, and
the midlatitude critical layer in the middle troposphere

— Here for northern winter; northern summer is similar
— Hence the jet both shapes, and is shaped by, the eddies
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* Horizontal eddy momentum fluxes are directed into the jet
cores, i.e. upgradient, so the eddies act to maintain the jet
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