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What	comes	next	
•  Reading,	Aug-Sept	2017	

–  CliMathNet	Conference	(with	Ashwin,	Bodai,	Broecker,	
Fowler,	Freitag,	Kuna,	Neves,	ScoF,	Shepherd,	Williams)	

•  ICTP,	May	2018	
–  Advanced	Workshop	on	Nonequilibrium	Systems	in	
Physics,	Geosciences,	and	Life	Sciences	(with	Bouchet,	
Ruffo,	Gallavo^,	Gambassi)		

•  Les	Houches,	Feb-March	2019	
–  Physics	and	Mathema`cs	of	Turbulent	Flows	at	Different	
Scales	(with	Dubrulle,	Faranda,	Wouters,	GoFwald)	

•  Inst.	Poincare,	Autumn	2019	
–  The	mathema`cs	of	climate	and	the	environment		(with	
Ghil,	Chekroun,	Klein,	Le	Treut,	Speich)	
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Melancholia	(2011,	Von	Trier)	
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•  Close	encounter	btw	
Earth	and	brown	dwarf	
–Tension	grows	

•  Very	close	to	the	`pping	
point	-	Tension	peaks	

•  Unavoidable	Impact	–	
Tension	is	released	



Mo`va`ons:	Basics	
•  Understanding	how	a	system	responds	to	perturba`ons	is	
a	central	area	of	research	in	natural	and	mathema`cal	
sciences	
–  Robustness	of	the	system?	
–  Smooth	response?	
–  Cri`cal	Transi`ons?	

•  Groundbreaking	work	by	Kubo	(1957)	
–  Response	theory	for	sta`s`cal	physical	systems	
–  Only	for	near-equilibrium	(canonical	ensemble)	
– Mathema`cally	and	physically	non-rigorous,	many	cri`cisms	
–  Acous`cs,	Op`cs,	etc.	based	on	Kubo’s	results	
–  Fluctua`on-Dissipa`on	Theorem:	dic`onary	between	forced	
and	free	fluctua`ons	
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From	Smooth	Response	…	
•  Ruelle	(‘90s):	rigorous	response	theory	for	smooth	
observables	of	Axiom	A	systems	(eq.	&	noneq.!)	
– Usual	FDT	does	not	apply	for	nonequilibrium	systems:	
unstable	vs	stable	direc`ons	in	tangent	space	

–  Cri`cal	Transi`ons	as	loss	of	smoothness	in	response	
–  Theory	useful	to	perform	predic`ons	but	hard	to	construct	
response	operator!	

	

•  Liverani,	Baladi,	Dolgopyat,..	(‘00s)	
–  Response	theory	derived	using	transfer	operator	approach	
–  Change	in	the	invariant	measure	vs	change	in	observables	
–  Beyond	Axiom	A	systems	
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…	to	Cri`cal	Transi`ons	
•  Catastrophe	theory	(’60s,	Thom,	Arnold):	
comprehensive	view	of	bifurca`ons	in	
“rela`vely	simple	systems’	

•  Mul`stability	in	complex	systems	&	hysteresis	
•  Defining	the	boundaries	between	the	basins	
•  Ashwin	et	al.	2012:	Parameter-,	rate-,	and	
noise-induced	`pping	

•  Freidlin-Wentzell	theory	(’70s)	based	on	Large	
Devia`ons	Theory	(‘60s):	general	laws	for	
noise-induced	escape	from	basins	of	
aFrac`on	
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Why	Climate	is	relevant	
•  The	climate	is	a	nonequilibrium	system	whose	
evolu`on	is	driven	by	inhomogeneous	absorp`on	of	
solar	radia`on	

•  The	climate	features	variability	of	a	vast	range	of	
spa`al	and	temporal	scales	

•  Understanding	the	climate	response	to	perturba`on	
is	great	scien`fic	challenge	
– Anthropogenic	climate	change	
–  Paleoclimate	→	Life	
–  Planetary	Science	→	Habitability	

•  Smooth	vs.	nonsmooth	response	
–  Climate	change,	climate	surprises,	climate	`pping	points	
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•  Ver`cal	

•  Horizontal	
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Nonequilibrium 



An	extremely	non-ideal	engine	
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•  Efficiency	
•  Energy	transforma`on	
•  Entropy	Produc`on	



Scales of Motions 
Smagorinsky/Stommel 
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Climate	Response	

A.  Smooth	response	–	Response	Theory	
Construc`ng	the	sensi`vity	of	the	climate	and	the	
measure	of	the	pullback	aFractor.	Link	between	
climate	variability	and	climate	change?	
	

B.  High	sensi`vity	–	Ruelle-PollicoF	Resonances	
Rough	dependence	on	system’s	parameters	
	

C.  Cri`cal	Transi`ons	
Crisis	of	the	high-dimensional	aFractor	
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A	

J.	Stat.	Phys.	166,	1036-1064	(2017)		
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•  Perturba`on	to	Axiom	A:	
•  Change	in	expecta`on	value	of	a	smooth	Φ:	

	
•  Linear	term:	

•  Linear	Green:	
•  Linear	suscept:	
		obeys	KK	rela`ons	

Construc5ng	the	5me-dependent	measure	
via	Ruelle	Response	Theory	

Φ
1( ) t( ) = dσ∫ GΦ

(1) σ( )e t −σ( )
GΦ
(1) t( ) = ρ0 dx( )∫ Θ t( )X ⋅∇StΦ

χΦ
(1) ω( ) = dt∫ exp iωt[ ]GΦ

(1) t( )

Φ
1( ) ω( ) = χΦ

(1) ω( )e ω( )

!x = !F x, t( )= F x( )+εe t( )X x( )

Φ t( ) = Φ
0
+ ε k Φ

(k ) t( )
k=1

∞

∑ Pullback	aFractor	



Model	Starter		
and	

Graphic	User	Interface	

Spectral	Atmosphere	
moist	primi`ve	equa`ons	

on	σ	levels	

Sea-Ice	
thermodynamic	

Terrestrial	Surface:		
five	layer	soil	
plus	snow		

Vegeta`ons	
(Simba,	V-code,		

Koeppen)	

Oceans:	
LSG,	mixed	layer,	
or	climatol.	SST	

PLASIM: An efficient Climate Model	
				

Key	features	
• 	portable	
• 	fast	
• 	open	source	
• 	parallel		
• 	modular	
• 	easy	to	use	
• 	documented	
• 	compa`ble	

O(105)	d.o.f.	
16	



•  Observable:	globally	averaged	TS	
•  Forcing:	increase	of	CO2	concentra`on	
•  Linear	response:	
•  We	perform	ensemble	experiments	

– Concentra`on				at	t=0	
•  Fantas`c,	we	es`mate	

•  …and	we	predict:	

Step	1	

T S f

(1) t( ) = dσ∫ GTS
(1) σ( ) f t −σ( )

d
dt

T S f

(1) t( ) = εGTS
(1) t( )

f t( ) = εΘ t( )

T S g

(1) t( ) = dσ∫ GTS
(1) σ( )g t −σ( )

f t( )
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Climate	Change	Predic5on	-	TS	
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[CO2]	360	ppm	→	720	ppm	at	1%	per	year		
2X	ayer	τ	≈	70	years,	constant	ayer	that	

T S gτ

(1) t( ) = dσ∫ GTS
(1) σ( )gτ t −σ( )

Predic5on	



(Transient)	Climate	Sensi5vity	

•  ΔT	at	the	end	of	the	ramp	(τ=70	ys)	
•  Smaller	than	ECS	(4.1	K	vs	4.8	K)	
•  Want	to	define	iner`a	at	all	values	of	τ	

–  Instantaneous	vs	quasi	sta`c	
19	

TCR τ( ) = T S gτ

(1)
τ( ) = dσ∫ GTS

(1) σ( )gτ τ −σ( )

            = ECS −P fCO2

2 x χTs
(1)(ω)1+ sinc(ωτ / 2)e−iωτ /2

2πiω−∞

+∞

∫ dω

ECS =ℜ χTS
(1) 0( ){ }= 2

π
dω∫ Re[ Ts

(1) (ω)] “EQUILIBRIUM”	

“TRANSIENT”	



TS		
Projec5on	
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Error		
	

Nonlinear	
Process	

	
Ice-Albedo	

Beyond	Global	Indicators	



Common	Sense	
•  Forced	fluctua`ons	will	project	on	the	free	ones	

–  FDT	will	work	
•  …	unless	you	are	in	low	dimension	and/or	use	
cooked-up	observables	&	forcings	

•  Past	experiments:	some`mes	FDT	works,	
some`mes	it	does	not	work.	Why	so?	

•  ..	But	some`mes	cows	are		
not	really	spherical	...	

Gritsun	&	Lucarini,	2017,	Physica	D	
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A	

Physica	D	349,	62-76	(2017)		



Simple	model	of	the	mid-la`tudes	
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•  Ψ	is	streamfunc`on,	ΔΨ	vor`city	
•  Rota`on,	Orographic	forcing,	diffusion,	fric`on	
•  External	driving		
•  Made	to	look	like	winter	atmosphere	
•  Very	chao`c	(#(λj,>0)=28,		231	dof)	



Response	to	Forcings	
•  Response	orographic	forcing	vs	natural	variability	
•  Resonance	inexplicable	with	FDT	
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•  Resonance	comes	from	a	group	of	UPOs	
•  UPOs	rarely	visited	by	system	but	resonant	
•  Possible	paradigm	for	clima5c	surprises	



Effect	of	Orographic	forcing	
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“Tipping	elements”	
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•  “Highly	sensi`ve”	regions	to	climate	change,		
“irreversible”	response	to	forcings	

Lenton	et	al.	2007	
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High	Sensi`vity	vs	Tipping	Point	
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Stolen	from	Lenton,	somewhere…	



Effec5ve	Poten5al	plus	noise	

Cold

Warm
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•  A	simple	model	of	the	form		
•  Transi`ons:	noise	ac`ng	on	the	effec`ve	poten`al	
•  Prob	≈	exp[-2ΔV/ε2]	
•  Time	series	analysis	vs	dynamics:	Procedure	is	not	robust	

•  Unless:	EVT	-	Faranda,	Lucarini,	Manneville,	Wouters	2014	

e.g.	Lenton	et	al.	2008	

dY = −dV dY +αdW

ΔV	

ΔV	



Climate	Response	

A.  Smooth	response	–	Response	Theory	
Construc`ng	the	sensi`vity	of	the	climate	and	the	
measure	of	the	pullback	aFractor.	Link	between	
climate	variability	and	climate	change?	
	

B.  High	sensi`vity	–	Ruelle-PollicoF	Resonances	
Rough	dependence	on	system’s	parameters	
	

C.  Cri`cal	Transi`ons	
Crisis	of	the	high-dimensional	aFractor	
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B	
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B	



What	happens		
Near	Cri`cal	Transi`on	two	separate	processes:		
•  Cri`cal	Slowing	down:	the	decay	of	
correla`ons	becomes	slower	and	slower		
– Property	of	the	aFractor	
– The	system	has	longer	memory	
– The	response	to	perturba`on	diverges		
– Radius	of	expansion	of	Ruelle’s	theory	

•  Convergence	of	ensembles:	the	aFractor	
aFracts	less	efficiently	nearby	trajectories	
– Property	of	neighborhood	of	the	aFractor	
– Cannot	be	flagged	by	dynamics	on	the	aFractor	
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Climate	Response	

A.  Smooth	response	–	Response	Theory	
Construc`ng	the	sensi`vity	of	the	climate	and	the	
measure	of	the	pullback	aFractor.	Link	between	
climate	variability	and	climate	change?	
	

B.  High	sensi`vity	–	Ruelle-PollicoF	Resonances	
Rough	dependence	on	system’s	parameters	
	

C.  Cri`cal	Transi`ons	
Crisis	of	the	high-dimensional	aFractor	
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Snowball/Snowfree	Transi5ons	
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•  …	and	the	reserved	transi`on	



Historical	Note	

•  The	bistability	of	the	Earth	system	was	
discovered	when	studying	the	possible	effects	
of	the	nuclear	winter	

•  Budyko,	Sellers	in	the	late	‘60	realized	that	a	
prolonged	nuclear	winter	might	lead	to	a	
global	glacia`on	

•  Ghil	(1976)	extended	the	analysis	
•  People	laughed	at	this	possibility…	but	in	early	
’90s	paleo	evidences	emerged!	
– Beware	cri`cal	transi`ons!	
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Feedbacks	(1)	

•  Radia`ve	feedback	
•  Warmer	bodies	emit	
more	

•  Cooler	bodies	emit	less	

•  Nega`ve	feedback	
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Feedbacks	(2)	
•  Ice-albedo	feedback:	
•  A	warmer	surface	has	
less	snow	cover	

•  Albedo	decreases	
•  More	radia`on	is	
absorbed	

•  Temperature	anomaly	
is	strengthened	

•  Posi`ve	feedback	
38 



0-D	Energy	balance	
	

Ice/Albedo	Feedback	

•  Energy	balance	:	

•  With:	

39 100 150 200 250 300 350 4000.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T (K )

α p T( )    

α1,       T < T1

α1 +
T −T1

T2 −T1

α2 −α1( ),                T2 < T < T1

α2       T > T2

"

#
$
$

%
$
$

C dT
dt

= I −O

C dT
dt

= 1−α p T( )( ) S4 − A+BT( )

I																		0	



Bifurca5ons	
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1D	Energy	Balance	Model	–	Ghil	‘76	
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Diffusion	parameter	
Greenhouse	effect	

Ice-albedo	feedback	



Temperature	Profiles	
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Grebogi,	O^,	Yorke	
(1983):	
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A 

?	

From	this..	

…	
to	this!	

?	



Clima5c	Edge	States		
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CO2	 S*	

Boschi	et	al.	2013	

DIFF	

NonDIFF	

EDGE	STATES	
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C	 Clim.	Dyn.	44,	3361-3381	(2015)	
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C	

Nonlinearity	30,	R32-R66	(2017)	



Spectral	Atmosphere	
moist	primi`ve	equa`ons	

on	σ	levels	

Sea-Ice	
thermodynamic	

Terrestrial	Surface:		
five	layer	soil	
plus	snow		

Vegeta`ons	
(Simba,	V-code,		

Koeppen)	

Ghil-Sellers	Diffusive	
Ocean	Model		
with	Albedo	

 
PUMA-GS	

•  Simplified	Climate	
Model	

•  Primi`ve	
Equa`ons	
Atmosphere	

•  Simple	Diffusive	
Ghil	‘76	Ocean	

•  Slow	and	fast	
climate	variability	

•  Posi`ve/nega`ve	
feedbacks		

	
O(105)	d.o.f.	
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Edge	State:	“rela5ve	a^ractor”	on	the	
basin	boundary		
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•  Ayer	GOY	1983:	Eckhardt	et	al.,	mul`stable	fluids	
– Pipe	flow,	Plane	CoueFe	Flow	with	fixed	point	vs	
(transient)	turbulent	regime	for	suitable	Re	

•  Dynamics	on	the	basin	boundary	



Tracking	the	Edge	State	
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•  Dynamics	of	an	orbit	near	the	the	basin	boundary	
–  First,	it	relaxes	VERY	rapidly	towards	the	edge	state;	
–  Second,	it	decides	towards	which	aFractor	it	should	head	to;	
–  Third,	it	reaches	the	final	des`na`on.	

•  Reitera`ng	the	procedure	we	end	up	on	the	..	“Melancholia	
states”	(ayer	L.	Von	Trier’s	movie)	



A	closer	look	at	the	boundary	
•  Pikovsky:	“is	the	basin	boundary	smooth?”		

–  It	is	folded,	indeed	fractal.		
– Result	of	1024	integra`ons	between	two	trajectories	
near	the	boundary,	0.5	K	difference	in	Tsurf	

– Result	of	different	`me	scales	of	instability	on	the	
edge	states	vs	across	it	
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Mul5ple	Steady	States	

51	

CHAOTIC	MELANCHOLIA	STATE	

CHAOT
IC	WARM	CLIMATE	STA

TE	

STATIONARY	COLD
	CLIMATE	STATE	

SYMMETRY	
	BREAK	

SYMM.	
BREAK	

CHAOTIC	TRANSIENT	STATE	

3	CLIMATES	

3	STABLE	STATES	



Mul5stability	
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Cold	State	 Melancholia	State	 Warm	State	



Symmetry	Break	of	the	Melancholia	State	
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Conclusions	
•  Climate	as	nonequilibrium	sta`s`cal	mechanical	system	
•  Beyond	invariant	measure:	pullback	aFractor	
•  Response	theory	for	smooth	response	

–  Predict	climate	change,		
•  High	sensi`vity	and	mixing	rate	

–  Transfer	operator	approach	
•  Mul`stability	and	Tipping	points	

– Melancholia	State,	gate	for	the	transi`ons		
•  We	can	construct	the	Melancholia	state,	which	separates	the	warm	

from	the	snowball	climate	state,	also	in	real	GCMs	
•  The	edge	state	is	the	gate	allowing	for	noise-induced	transi`ons	

between	the	two	basins	of	aFrac`on		
•  Note:	Proximity	to	Tipping	Points	can	be	detected	using	EVT	(Faranda,	

Lucarini,	Manneville,	2014)	



Beware	Cri`cal	Transi`ons!	


