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Barotropic vorticity equation (2D Euler flow)
7
ot

Has two inviscid integral invariants, the (kinetic) energy and the
enstrophy

JI AVl dxdy [ £(vp)* dxdy

The wavenumber spectra are related by Z(k)=k?E(k)

g=Vy=2Vxu (vorticity), —Vy+JW,Vy)=0

Enstrophy conservation prohibits a direct (downscale) energy
cascade (a characteristic of 3-D turbulence), and leads to the
peculiar properties of 2-D turbulence (e.g. inverse cascade)

— Accounts for the large-scale flow structures of geophysical
fluids, and the formation of coherent vortices

— Also a classical problem in mathematics and physics!



* Spontaneous emergence of coherent vortices
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e Spreading of an initially localized energy spectrum
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Hence energy moves
mainly to smaller k,
i.e. to larger spatial
scales

Similarly, enstrophy
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The classical picture of two-dimensional turbulence (after
Kraichnan 1967 Phys. Fluids)

— Power laws follow from scaling symmetry (dim’l analysis)

— Argued to be relevant to the atmosphere by Charney (1971
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An aside: the inverse
energy cascade in alpha-
turbulence

System forced within
dissipation range to
suppress coherent vortex
formation

No large-scale dissipation;
simulation stopped before
turbulence is “boxed in”

Similarity spectrum holds
for a < 2.5, but not fora 2
2.51

Burgess & Shepherd
(2013 JFM)



Kinetic energy spectra from FGGE data
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* The spectral fluxes can be decomposed into stationary (dash-

dot), transient (dashed), and mixed stationary-transient
(dotted) components
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e The interaction between a zonal flow and eddies induces non-
linear transfer of eddy enstrophy at fixed zonal wavenumber m

* Has implications for energy exchange between eddies and mean
flow

m=2: eddies gain energy m=7: eddies lose energy
from mean flow to mean flow
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* Assuming 2-D turbulence, Leith ij
(1971 JAS) represented the gl
interactions with unresolved gt
scales as an effective diffusion ol
with a negative spectral range, L
« e . ———
giving zero energy loss (right) i S
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* Applying this to the FGGE data gave estimated total energy and
enstrophy fluxes which were consistent with theory
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e The T799 ECMWEF operational analysis from January 2008
appears to resolve the fluxes in the upper troposphere

— Baroclinic excitation occurs over n=10-30
— Well defined downscale enstrophy flux, mainly eddy-eddy
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Kinetic Energy [m2 5'2]
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* Moreover it gives a
remarkably clean k3
energy spectrum in the
upper troposphere!

Burgess, Erler &
Shepherd (2013 JAS)



Spectral Density (m3 s-2)
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However, upper tropospheric aircraft observations revealed a
k3/3 energy spectrum at scales from about 5-500 km
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* The origin of the Gage-Nastrom spectrum has been a matter
of considerable controversy

— Some (e.g. Lilly 1983 JAS) have argued for an inverse
cascade of balanced (low Froude number) energy from
the mesoscale (2-D turbulence)

— However, evidence appears to be consolidating around a
forward (downscale) cascade of unbalanced energy,

uninhibited by the potential enstrophy constraint (e.g.
Waite & Bartello 2004 JFM; Lindborg 2006 JFM)

* Imbalance can be generated by a variety of
mechanisms

— One can expect upward radiation of internal gravity
waves from any such spectrum

— There are many ways to get a k>/3 energy spectrum; all
one requires is the appropriate scaling symmetry



The Gage-Nastrom spectrum (blue) is reproduced in high-
resolution GCMs (here AFES T639 at 45°N and 200 hPa)
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Kinetic Energy [m? s2]

It is also seen in ECMWEF forecasts at sufficiently high spatial
resolution and altitude, and is associated with the emergence
of the divergent (unbalanced) component of the spectrum
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 The rotational component of the flow decays with altitude
(Charney-Drazin filtering) while the divergent component
grows; the spectral break correspondingly moves upscale
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* Even low-resolution GCMs exhibit an unbalanced spectrum,
which emerges at sufficiently high altitudes

— 320 K isentropic surface is upper troposphere (10 km)
— 1000 K is middle stratosphere (35 km)
— 4000 K is middle mesosphere (70 km)
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» C(Classic paradigm of atmospheric predictability (Lorenz 1969
Tellus):

— Imagine the atmosphere is perfectly observed down to a
certain spatial resolution

— Suppose the forecast model is perfect

— The initial errors at the smallest scales will eventually
contaminate the solution at large scales

— For how long is the atmosphere predictable?
* Heuristic argument (see Vallis 1985 QJRMS):

) Let 77, be the time for error on horizontal
length scale L to introduce error on length scale 2L. Then the predictability time
at scale L, if the initial error is at scale (1/2)NL, is

N
In =TLj2+TL/a+TL/8+ o+ T 2Ny = ZT(l)NL'
n=1 \2
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Now, what is 77,7 Dimensional analysis suggests 7, ~ (k3E(k))” "~ where k is the
horizontal wavenumber, F'(k) is the spectral density of kinetic energy, and L = %
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* Forecast skill in ECMWF system over time (based on mid-
tropospheric geopotential height anomalies)

—Day3NH —Day5NH —— Day 7 NH —— Day 10 NH
—Day3SH —Day5SH —— Day7SH —— Day 10 SH

Forecast skill (%)

dd"
v
\ J
. f
v | \\ v
A
N
30 NSV e\ m

1981 1985 1980 1993

2001 2005 2009

1997 2013

Year

Bauer, Thorpe & Brunet (2015 Nature)



