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•  Mo6va6on	for	study	of	balanced	dynamics	

Jule	Charney	
(1917-1981)	



•  Surface	pressure	during	passage	of	a	cold	front	and	
associated	squall	line	at	a	staEon	in	Oklahoma	

Data	from	NOAA	



•  Leads	to	reduced	models,	which	are	easier	to	solve	(esp.	QG)	

Figure	courtesy	of	Ian	Chan	



•  An	arbitrary	iniEal	condiEon	will	project	onto	both	the	fast	
and	the	slow	degrees	of	freedom	(geostrophic	adjustment)	

Figure	courtesy	
of	Ian	Chan	



•  Observed	iniEal	condiEons	will	have	a	spuriously	large	
projecEon	onto	IG	waves,	will	generate	unphysical	oscillaEons	

•  IniEalizaEon	can	control	these	oscillaEons	(slow	manifold)	

Temperton	&	Williamson	(1981)	

Unini6alized	

Linear	
Nonlinear	



•  Consider	the	shallow-water	equa6ons	on	the	f-plane	(a	very	
important	model	in	atmosphere-ocean	dynamics!)	
–  Analogous	to	horizontal	dynamics	of	hydrostaEc	primiEve	
equaEons	in	isentropic	coordinates	

	
•  Linearize	about	a	state	of	rest	with	constant	depth	h	=	H	
	Then	the	ansatz																																									leads	to		
	ω0	=	0					or			ωIG

2	=	f2	+	gHκ2	(IG	waves),	where	

•  Depending	on	κ,	the	IG	waves	may	be	dominated	either	by	
rotaEon	or	by	gravity	(surface	waves)	

•  Note	that	|ωIG|	>	f		(low-frequency	cut-off	because	of	rotaEon)	
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•  Introduce	a	Doppler	shi`	Uκ	to	the	frequency	to	take	account	
of	the	nonlinear	advecEon	term	in	the	dynamics.	Then	

•  Under	these	condiEons	we	have	a	separa6on	in	6mescales,	
and	can	disEnguish	between	fast	and	slow	dynamics	

•  Define																				(Rossby	no.)			and																						(Froude	no.)	

	(note	analogue	of	Fr	for	conEnuously	straEfied	flow).	Then	

•  Hence	ε	<<	1	if	either	Ro	or	Fr	are	small,	even	if	the	other	
parameter	diverges	(Saujani	&	Shepherd	2006	JFM)	

	

€ 

ω 0

ω IG

≈
Uκ

Uκ + f 2 + gHκ 2
<<1 ⇔ ε =

Uκ
f 2 + gHκ 2

<<1

€ 

Ro =
Uκ
f

€ 

Fr =
U
gH

€ 

ε =
Ro Fr
Ro2 + Fr2



•  The	raEo	Fr/Ro	determines	whether	rotaEon	or	gravity	
dominates	

																																										;						L=1/κ,	LR	=	Rossby	deformaEon	radius	
	
•  In	classical	quasi-geostrophic	scaling,	Ro	=	Fr	and	the	effects	

of	rotaEon	and	gravity	are	taken	to	be	comparable	
•  Now	non-dimensionalize	the	full	shallow-water	equaEons	

with	characterisEc	velocity	scale	U,	horizontal	length	scale	LR,	
the	slow	advecEve	Eme	scale	LR	/U,	and	h	=	H	(1	+	Ro	η)	

•  This	gives	the	dimensionless	system	

	
•  If	Ro	<<	1,	then	to	obtain	slow	moEon	we	require…	
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•  Equivalently,															and															where		
•  But	there	are	actually	only	two	independent	constraints	here;	

eliminaEng	the	1/Ro	terms	in	the	equaEons	gives	

																																																										(QG	poten6al	vor6city	equa6on)	

•  This	is	now	a	closed,	first-order	Eme-evoluEon	equaEon	

																																								where	

	(Note	requirement	of	addiEonal	boundary	condiEon	on	the	
circulaEon	along	lateral	sidewalls)	

•  The	existence	of	a	single	slow	equaEon	is	no	accident,	since	we	
had	a	slow	(zero-frequency)	linear	mode	in	the	system	
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•  Note	that	(as	with	incompressibility	or	hydrostaEc	balance)	the	
reducEon	is	not	exact;	but	an	asymptoEc	procedure	can	be	
developed	to	define	an	approximate	slow	manifold,	with	the	
“fast”	variables	f	slaved	to	the	“slow”	variables	s	(Warn	et	al.	
1995	QJRMS)	

	and	so	on	(Bokhove	&	Shepherd	1996	J.Atmos.Sci.	show	the	
asymptoEc	nature	of	this	series	for	a	low-order	ODE	system)	
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•  In	geophysical	fluid	dynamics,	a	slow	equaEon	is	always	
provided	by	the	poten6al	vor6city,	which	necessarily	evolves	
on	the	advecEve	Emescale	(Hoskins	et	al.	1985	QJRMS)	

•  In	the	special	case	of	the	shallow-water	equaEons,	

		
	
	which	apart	from	constants	is	the	QG	potenEal	vorEcity	q,	
	and	the	fast	variables	are																															and			

•  The	slaving	relaEons	are	known	as	balance	rela6ons,	and	the	
slow	dynamics	is	known	as	balanced	dynamics	
–  O(1)	is	QG	balance,	O(ε)	is	Charney-Bolin	balance	
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•  Poten6al	vor6city	slaving	in	the	shallow-water	system	

Warn	et	al.	(1995	QJRMS)	



	O(1):	
	
	
	

	O(ε):	

Warn	et	al.	(1995	QJRMS)	



	O(ε2):	
	
	
	

		

Warn	et	al.	(1995	QJRMS)	





•  The	Lorenz	(1986	JAS)	5-component	model	
•  Turns	out	to	be	a	Hamiltonian	system,	with	invariants	

•  Integrable	for	b=0	(pendulum	coupled	to	harmonic	oscillator)	



•  In	the	integrable	case,	soluEons	live	on	a	two-torus,	and	
generally	are	quasi-periodic	(not	periodic)	

Bokhove	&	Shepherd	(1996	JAS)	



•  KAM	theorem	applies:	most	invariant	tori	preserved	for	
sufficiently	small	perturbaEons	b	

•  Poincaré	secEons:	b	increasing	from	zero	(le`)	

Bokhove	&	Shepherd	(1996	JAS)	



•  An	exact	slow	manifold	can	
be	defined	geometrically	

•  Slaving	approximaEon	is	
only	asymptoEc	

•  Lorenz	(1986)	found	the	
slow	soluEons	as	periodic	
soluEons	

Bokhove	&	Shepherd	(1996	JAS)	

Fast	oscilla6ons	

10th	order	ini6aliza6on	

12th	order	ini6aliza6on	

Periodic	solu6on	



•  Lorenz	(1986)	system	is	pathological	because	slow	dynamics	is	
integrable:	unambiguous	separaEon	of	fast	and	slow	dynamics	

•  Making	C	periodic	in	Eme	makes	the	slow	dynamics	chaoEc	
•  Fast	acEon	is	sEll	bounded	for	finite	Emes	by	adiabaEc	

invariance	(Nekhoroshev	1971,	Neishtadt	1984)	

WirosoeEsno	&	Shepherd	(2000	Physica	D)	
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	Power	spectra	of	potenEal	
vorEcity	and	divergence	
(minimum	frequency	is	22)	

	Power	spectra	of	divergence	
for	O(1),	O(ε)	and	O(ε3)	
iniEalizaEon	(slaving)	

	Power	spectrum	of	unslaved	
divergence	in	the	last	case	
(minimum	frequency	is	10)	

	
P	

WirosoeEsno,	Shepherd	&	Temam	(2002	J.Atmos.Sci.)	

A	yet	more	complex	model	



	Instantaneous	
height/velocity	and	
divergence	fields	
	The	same,	but	
derived	solely	from	
potenEal	vorEcity	
	The	instantaneous	
potenEal	vorEcity	
field	

McIntyre	&	Norton	(2000	J.Atmos.Sci.)	


