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* Motivation for study of balanced dynamics

"We might say that the atmosphere is a musical instrument,” wrote Charney, "on which one
can play many tunes. The high notes are sound waves, low notes are long inertial waves, and
nature as a musician is more of a Beethoven than of the Chopin type. She much prefers the low
notes, and only occasionally plays arpeggios in the treble, and then only with a light hand.

"The ocean and the continents are the elephants in Saint-Saens's animal suite, marching in a
slow cumbrous rhythm, one step every day or so. And, of course, there are overtones - sound

waves, billow clouds and inertial oscillations."

Jule Charney
(1917-1981)




» Surface pressure during passage of a cold front and
associated squall line at a station in Oklahoma
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e Leads to reduced models, which are easier to solve (esp. QG)

Prognostic equations for u, v, w, p, T

L + 1deal gas law
3D-Compressible
lFilters sound waves V- -@= 0, p.=—pg
Incompressible
lFilters inertial gravity waves —fu= %Pz , fv= %Py

Quasi-geostrophic

\ Conservation of PV

+ 5 diagnostic equations

Figure courtesy of lan Chan



* An arbitrary initial condition will project onto both the fast
and the slow degrees of freedom (geostrophic adjustment)
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* Observed initial conditions will have a spuriously large
projection onto IG waves, will generate unphysical oscillations

* I|nitialization can control these oscillations (slow manifold)
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Consider the shallow-water equations on the f-plane (a very
important model in atmosphere-ocean dynamics!)

— Analogous to horizontal dynamics of hydrostatic primitive
equations in isentropic coordinates

i . oh q
a—bt‘+(a-vm+fz xii=—-gVh, —-+V- (hii) =0

Linearize about a state of rest with constant depth h=H
Then the ansatz exp{i(kx + /y —wt)} leads to
we=0 or wg?=f+gHkK?(IG waves), where k* =k* +(

Depending on k, the IG waves may be dominated either by
rotation or by gravity (surface waves)

Note that |w| > f (low-frequency cut-off because of rotation)



Introduce a Doppler shift Uk to the frequency to take account
of the nonlinear advection term in the dynamics. Then

Do Uk <<] & ¢-= Uk <<1

W6 U1<+\/f2+gH1<2 \/fz+gH1<2

Under these conditions we have a separation in timescales,
and can distinguish between fast and slow dynamics

Uk U
Define Ro =— (Rossby no.) and Fr =—— (Froude no.)
f V&H

(note analogue of Fr for continuously stratified flow). Then
Ro Fr

€ =
\/R02+Fr2

Hence € << 1 if either Ro or Fr are small, even if the other
parameter diverges (Saujani & Shepherd 2006 JFM)




* The ratio Fr/Ro determines whether rotation or gravity
dominates

Fr S L ;  L=1/k, L, = Rossby deformation radius

Ro xlgH L,

* In classical quasi-geostrophic scaling, Ro = Fr and the effects
of rotation and gravity are taken to be comparable

 Now non-dimensionalize the full shallow-water equations
with characteristic velocity scale U, horizontal length scale L,
the slow advective time scale L, /U, and h=H (1 + Ro n)

* This gives the dimensionless system

owm . _ . 1 ,. _ on . 1 _ .
—+WV)u+—(Z2xu+Vn)=0, —+V- +—V-u=0
ot (V) Ro<Z ’ 77) ot (n1t) Ro g

* If Ro<< 1, then to obtain slow motion we require...



_@ V= @ (geostrophic
dy dx  balance)
* Equivalently, ¢y =1 and y=0 whereii=zxVy+Vy
* But there are actually only two independent constraints here;
eliminating the 1/Ro terms in the equations gives

zxu+Vn=0, V-u=0, ie. u=

(i n ﬁ.v)(av _ o - 77) =0 (QG potential vorticity equation)

* Thisis now a closed, first-order time-evolution equation

0
r+Jpg) =0 where g =V -y
(Note requirement of additional boundary condition on the

circulation along lateral sidewalls)
* The existence of a single slow equation is no accident, since we
had a slow (zero-frequency) linear mode in the system



Note that (as with incompressibility or hydrostatic balance) the
reduction is not exact; but an asymptotic procedure can be
developed to define an approximate slow manifold, with the
“fast” variables f slaved to the “slow” variables s (Warn et al.
1995 QJRMS)

Ja If s
=F(s,f:8), —=358(.f;
PR (s, f3€) Py (8, /3€)
f=Us¢e) = f=fP+eV+...
J
o1): O =o, ;‘; = 5(5,0;0)
A
. 1 _ -1 . et (D).
O@): fU=T"F(s0:0), —=S(s.f"e),,,

and so on (Bokhove & Shepherd 1996 J.Atmos.Sci. show the
asymptotic nature of this series for a low-order ODE system)




* In geophysical fluid dynamics, a slow equation is always
provided by the potential vorticity, which necessarily evolves
on the advective timescale (Hoskins et al. 1985 Q/JRMS)

* In the special case of the shallow-water equations,

f+z2-Vxu . f(+Roz-V xu)

0= H( + Ron)
zi 1+R0(§v—é)u—n)+...
H ox oy

which apart from constants is the QG potential vorticity g,

and the fast variablesare 6 = V- ii =V’y and V(¥ -n)

* The slaving relations are known as balance relations, and the
slow dynamics is known as balanced dynamics

— 0O(1) is QG balance, O(g) is Charney-Bolin balance



* Potential vorticity slaving in the shallow-water system

dq
FYin —J(y,q) — Vx- Vg,
oD Q 1 |
— == Viy) - 5'\""‘le2 + Vi(x, y) + 2 (g, )
aQ KD i i |
= W V) - V-(Viy Vy) + VI (g, n) + V-(n Vx)}
1+ £V Viy—n
1 + &g = =
L+ e 1+ en ~ 4 1+ en

D=V-v=V Q=Viy—- V2

H

v2-1 v=k X Vy+ Vy

Warn et al. (1995 QJRMS)



O(1): X(O) = QM = Vzw(()) _ t//m) =gq

oq
—+v-Vg=0
ot vve

O(g): o) — _2‘[(%0), %0)) Ax(l) - J(q,(O)’ Vzw(o))
Vzw(l) - ﬂ(l) — 77(0')q

9 |
3%+V~Vq=0 y=9yO + ey’ y=yO4 g®

Ay = &l(y, V?y)
HV> y=9yO=%"g
Ay = Vg + &Vi(yq) + 2 (v, 1))}

A

il

Warn et al. (1995 QJRMS)



O(&%): %9 +v-Vg =90
ot

Ay =V’q + ¢R(y) + £€P(y) Ay = eG(y) + €C(y)

G(y) =J(7, V)

R(y) = V¥(yq) + 2(¥s, )

C(y) = 2(3dH "U(y, 9)}, 1) + 2 (1., 0,{% “Y(v, @)}) + J(AT'R(y), V2y) +
+J(y, VIAT'R(y)) + V-{VH¥V(ATIG(y)} -
= VAJ(y, X'R(y) — vg) + JAT'R(Y), ») + V-{yV(AT'G(M)}]

P(y) = V(X 'R(y) — vq)qt +  J(H "J(7,q), Vy) +
+ 3 " (y, V¥ U(y, ) —HAT'G(y), Vi) + VI(ATIG(y), 1) +

+ 2J(0(AT'R(Y)), 1,) + 2 (1, ,(AT'R(Y))),

Warn et al. (1995 QJRMS)
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 The Lorenz (1986 JAS) 5-component model
* Turns out to be a Hamiltonian system, with invariants

_ 1 2 2 2 2 2 :
H'’ "E(x‘ + 2x5 + x5 + x5 + x3%) = 3(x? + x3)

* Integrable for b=0 (pendulum coupled to harmonic oscillator)

dx = 2 — ;
e R x; = v2C cos¢, x, = V2C sin¢
dt do

— = x3 — bx;s,
dx, dt
— = x;x3 — bx;xs,
dt dx.
dx, _ . = —C sin2¢,
dt 1429

dx b

by _ % @
dt €
dxs _ Xa s _ %8 4 e sin
dt . . + bX}Xz. dt € Sin ¢'



* Inthe integrable case, solutions live on a two-torus, and
generally are quasi-periodic (not periodic)

Bokhove & Shepherd (1996 JAS)



KAM theorem applies: most invariant tori preserved for

sufficiently small perturbations b

Poincaré sections: b increasing from zero (left)
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power spectrum * An exact slow manifold can

T be defined geometrically
10th order initialization
* Slaving approximation is
9.0 . :
only asymptotic
/\ 1 | ‘ u [ :  Lorenz (1986) found the
’lg'g slow solutions as periodic
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Lorenz (1986) system is pathological because slow dynamics is
integrable: unambiguous separation of fast and slow dynamics

Making C periodic in time makes the slow dynamics chaotic

Fast action is still bounded for finite times by adiabatic
invariance (Nekhoroshev 1971, Neishtadt 1984)
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UENING | , ; | | A yet more complex model

N Power spectra of potential

0 18 vorticity and divergence
oy (minimum frequency is 22)
- Power spectra of divergence
o for O(1), O(g) and O(e3)

initialization (slaving)

O i, 21 Power spectrum of unslaved
L BRI L "Y1 S TRTIITORAN NS A - divergence in the last case
L e N, (minimum frequency is 10)

20 40 60 80 100 120 140 160 f

Wirosoetisno, Shepherd & Temam (2002 J.Atmos.Sci.)



Instantaneous

height/velocity and

The same, but

m

ived solely fro

der

tial vorticity

poten
The

0p]
>
@
()
-
(4]
)
c
(1)
)

>
x
o
B
L -
@
>
©
g
c
Q
)
@)
o

INS

!

field

Mclntyre & Norton (2000 J.Atmos.Sci.)




