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Applications of Hamiltonian theory to GFD
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Department of Physics, University of Toronto

1 Generalized Hamiltonian dynamics

1.1 Introduction

Virtualy every model used in Geophysica Fluid Dynancs (GFD) is, in its conservative
form, Hamltonian. This is not too surprising since the fudamental equations from which
every model is derived are themselves Hanltonian: namely the three-diensional Euler
equations for compressible, stratified flow (Morrison & Greene 1980; Morrson 1982).

The Hamltonian formulation of dynancs is relevat to the description of many dif-
ferent phenomena. In the field of theoretical physics, it provides a general foundation for
quantum mechancs, quantum field theory, statistica mechancs, relativity, optics and celes-
tial mechancs. Hamiltonian structure constitutes a unifyng framework, wherein symetry
properties are readly apparent which may be connected to conservation laws by Noether's

theorem. One therefore expects some of the same advantages to hold in GFD.
In these lectures we wil consider particularly the application of Hamtonian structure

to problems involving disturbanæs to basic states. As we shal see, such diverse topics as
available potential energy, wave action, and most of the well-known hydrodynamcal stabilty
theorems (static stabilty, symetric stabilty, centrifugal stabilty, and the Rayleigh-Kuo

and Charney-Stern theorems) may all be understood - and in some cases signficantly
generalized - within the Hamiltonian framework.

It is sometimes objected that Hamiltonian structure is irrelevat to GFD because real
fluids are viscous. Against this, we note simply that many phenomena in GFD are essentially
conservative (inviscid, adiabatic) sinæ they occur at high Reynolds numbers, Re ~ 1. For
example, in the free atmosphere Re '" 1015. Thus many GFD phenomena (instabilties,
wave propagation, and wave, mean-flow interaction) are tradtionally studied withi the

framework of a conservative modeL. Even if non-conservative effects arise, these may often
be understood as localized effects on otherwise conserved quantities: examples include fronts,
shocks, and gravity-wave drag (cf. Benjamin & Bowman 1987).

Moreover, many of the most interesting phenomena in GFD arse from the nonlinear
(usually advective) terms in the relevant equations. Examples include wave, mean-flow in-
teraction, energy budgets and conversions, and spectral transfers iIi turbulent flow. These
nonlinear terms are conservative, and are therefore part of the Hamiltonian structure of the
problem. It follows that the nonlinear interactions are constraied by preservation of invari-
ant quantities (e.g. energy, enstrophy) which are connected to the underlying Hamiltonian
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structure of the model: one cannot deduce the correct spectral transfers in a problem uness
one imposes the correct invariants on the nonlinear dynamics.

Hamiltonian structure also provides a natural framework within which to derive approxi-
mate models. It is well known that in makng approximations one should attempt to maitain
fudamental conserved quantities. A good example of this is provided by the hydrostatic
primitive equations on the sphere (Lorenz 1967), where energy and angular momentum con-
servation are lost under the hydrostatic approximation, and certain manipulations must be
made to the equations in order to restore them. Rather than such trial-and-error methods,
it is preferable to ensure maintenance of invarance properties by makg the approximations
withi a Haniltonian framework (Salmon 1983, 1985, 1988a).

The approac followed in these lectures is to use the Hamltonian structure of G FD in
a very practical way. In particular, there is no need to use the Poisson bracket itself, or
even to know it, if one knows the invariants. One needs merely to know that the bracket is
there! All the manipulations requied here can be expressed in terms of standard varational
calculus: one has merely to var all dependent variables, integrate by pars, and check the
boundar conditions. Finaly, everything derived from Hamtonian theory may always be
verified afterwards by direct use of the equations of motion.

1.2 Dynamics

We consider the generalized Hamltonian dynamcal systemau = JflH (1)
at 8u '

where u(æ, t) are the dynamical fields, 1t is the Hamltonian, and J is a skew-symmetric op-
erator (caled the cosymplectic form) having the required algebraic properties (see Morrson's
lectures). The equivalent formulation in terms of Poisson brackets is

dF
di = (F,1t),

where F(u) is an adissible functional. The Poisson bracket is defined by

(F 9) = /8F J89), \ 8u' 8u

(2)

(3)

(the angle brackets denoting an appropriate inner product), and the bracket satisfies prop-
erties analogous to those of J. Typically

8F 89) f 8F 89
(T,Jr = 8æLT-Jiï¡;-.;u u i,j Ui UJ (4)

i.e. the inner product is the spatial integral of the dot product of the two vectors. Futher
discussion of the forms (1) and (2) as applied to fluid dynamics may be found in Morrison
(1982), Benjamin (1984), Salmon (1988b), and Shepherd (1990, 1992a).

Let us verify the equivalence of the above two formulations, (1) and (2). Assumng first
that (1) holds, we note from (3) that

(F 1t) = /8F J81t) = (8F aU) = dF (5), \ 8u ' 8u 8u' ât dt
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(the last step invokig the chain rue for fuctionals), and hence (2) is veried. Now assumg
that (2) holds, let us take

.rru) = Ui(Zo) = J 6(z - zo) Ui(Z) dz (6)

for some i and some Zo, where 6(z - zo) is the Dirac delta-fuction; thus

6.r = J 6(z - zo)6'U(z) dz,
6.r
7" = 6(z - zo) 6i;,QU.3

(7)

where 6¡; is the Kronecker delta. Then using (2), (6) and (7), we have

8u¡ d.r (6.r 6H.) ( 6H.) (6H.
at (zo) = di = 611' J 611 = 6(z - zo)6¡;, (J 611 ) = J 6u)/zo). (8)

Thus (1) is verified, component by component.

1.3 Steady states and conditional extrema

Let U = U be a steady solution of the dynamcs (1). If J is invertible, then

J6H. = 8U = 0611 u=U at (9)

leads to 6H.1 _ 0 ( )611 u=U - . 10
Hence steady solutions are extrema of H..

But suppose now that the dynamics of the system is non-canonica, in the sense that J
is non-invertible (cf. Morrson's lectures). Then (9) does not imply (10). However, Casimirs
C may be defied such that

J8C = 0
611 (equivalently, rC,.r) = 0 V.r), (11)

~,~~
'f-~.8
J\

and the set of all vectors 6C/6u spans the kernel of J. At U = U, therefore, 6H./6u is
locally paralel to 6C/6u for some C (a different C for each choice of U); equivalently, there
generically exists a Casimir C such that

6H.
611 u=U

6C
611 u=U. (12)

One must be careful here with classes of admssible variations; this point wil come up again
when we consider nonlinear stabilty. Note that Casimirs are always invariants of the motion,
since

dC = rC, H.) = (6C J6H.) = _(J6C 6H.) = o.
& 611' 6u 611' 611 (13)
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From (12), we have that

8~ ('H + C)lu=u = O. (14)
This statement has two interpretations: (i) U is an extremum of the invaant 'H+C; and (ü)
U is a conditional extremum of 'H, subject to the constrait C = const. (as with Lagrange
multipliers). An example of an ellptic fied point, representing a maxmum or minium,
is sketched below; the curves are lines of constant 'H, and the constraint sunace is the
"symplectic leaf" C = const.

~ = c.CWsf.

1.4 Example: barotropic vorticity equation
This model is discussed in Morrison's lectures, but it is useful to consider it in the present
context. The discussion wil also ilustrate some of the complications that are introduced by

boundares. The governng equation is the (2-D) vorticity equation
8w
at +8(1/,w) 

=0, (15)

where 1/ is the stream function, the velocity is given by v = Z x V1/, w = \721/ is the vorticity,
and 8(a, b) = axby - aybx is the two-dimensional Jacobian operator. With this choice of w,
the system is identical to the 2-D Euler equations. We consider a closed, multiply-connected
domain D with N connected boundaries 8Di (i = 1,..., N) on which v.n = 0 (or fhl8s = 0,

where s is arclength along 8Di), where n is the unit outward normal vector.
This system is Hamiltonian with

'H = J fÐ ~IV1/12 dxdy.

The fist variation of'H is given by

(16)

8'H J fÐ V 1/ . 8V 1/ dxdy

J fÐ (V . (1/8V 1/) - 1/ 8\721/) dxdy

L1/81 V1/. nds - I' f 1/8wdxdy,i JôDi JD (17)

where the last step follows from the fact that 1/ is constant on the boundaries. This means
that one canot write 8'H = ((8'Hl8w),8w) alone. Stated otherwise, w is not enough to

determine the dynamics; we need boundary terms as well, as follows.
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Defining "Ii = laD. V'l. fids to be the circulation on each connected piece aDi of aD,
reca that d'lddt = O. (This is the usual boundar condition on ,the tangential velocity;
it follows from consideration of the momentum equations underlying (15).) The boundar
circulations can therefore be considered dynamical varables, and one may rewrte 6'H in
terms of 6'li in addition to 6w: from (17),

6'H = ~ 't 6'li - ! fÐ 'l6w dxdy ,
i

(18)

which implies
6'H = -'l, 6'H - 'tI (19)6w 6'li aD. .

Note that in the fist equation of (19), one cannot think in terms of partial derivatives:
in particular, alv/2 iaw makes no sense. Instead, it is clear that varational derivatives are
required.

Relative to w alone, the "Ii'S extend the phase space in the following way: there are
now N + 1 dynamcal vaables u = (w, 'li,.. . , "IN )T, and the cosymplectic form J is an
(N + 1) x (N + 1) matri operator:

-a(w,.) 0

o 0
o
oJ= (20)

o o

Substituting (19) and (20) into (1) yields, as expected, the equations of motion

(aW d'li d'lN)T au 6'H ( )Tât' dt ,..., dt = at = J 6u = -a(w, -'l), 0,... ,0 . (21)

Having seen that arbitrar disturbances ca be incorporated into the Hamtonian de-
scription, let us now, for simplicity, restrict our attention to circulation-preservng distur-
bances: namely those with 6'li = 0 for all i. (If this condition holds at one time, it will
hold at all subsequent times.) For this special case, w is the sole dynamcal varable and
J = -a(w, .). Let us find the Casimirs. Solving (11) in this case, we obtain

6Ca(w, 6w) = 0; (22)

in other words, lines of constant w and constant 6CI6w coincide. Locally, at least, this means
that 6C i 6w = f (w) for some function f. Such a function may not be defied over the entire
domain D, however. A sub-class of these Casirrrs which is usefu for applications (see the
later sections on stabilty) consists of those for which the fuctional. relation is global: these

may be written as
C(wl = ! Iv C(w) dxdy (23)

for some function C. Since Casirrrs are always invarants of the motion, this demonstrates
that

~!!Ð C(w) dxdy = 0 (24)
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for any' function C(w). The set of conservation laws described by (24) reflects the fact
that w is a Lagrangian or material invariant of the dynamicS (15), given that the flow is
non-divergent. Since the dynamcal evolution takes place on the symplectic leaf C =const.,
where the constraint refers to all Casimirs simultaneously, we see that the Casimirs provide a
severe restriction on dynamically possible behaviour. This is intuitively obvious for pieæwise-
constant vorticity profiles. The caculation also demonstrates that there is nothig esoteric
about Casimirs: they have real physical meaning. ,

We should be able to show that steady solutions of (15) are conditional extrema of 1i,
subject to the constraint that the varations preserve C. First consider the extremal condition
(12), which takes the form 'l = CI(W) in this case for C given by (23). If, therefore, (12)
holds, it follows that

Wt = -8('l,w) = -8(C'(w),w) = 0, (25)
and the flow is steady. One may also build in the constraint imposed by conservation of
C directly on the vaations. To do this, set 6w = 8(cp,w) for some arbitrary cp which

is constant on the boundaries. Such varations 6w are clearly just non-divergent (area-
preservng) rearrangements of the vorticity field w, for which

8C = f!Ð ;~ 6wdxdy = f!Ð C'(w)8(cp,w)dxdy = f!Ð 8(cp,C(w))dxdy = O. (26)

For steady states with 8('l,w) = 0, the variation of 1i is then

61i = f!Ð ~: 6wdxdy = - f!Ð 'l8(cp,w) dxdy = f!Ð cp8('l,w) dxdy = 0 (27)

(using the fact that both 'l and cp are constant on the boundar); hence steady solutions
of (15) are seen to be unconditional extrema of 1i for vorticity-preservng variations, as
expected on general grounds.

The variations 6w = 8(cp,w) considered above may be written in the form 8w = Jcp,
which suggests the general form 6u = J cp for a vector cpo Evidently such variations are
guaranteed to be Casimir-preserving, sinæ

6C , (;~ ' 6u) = (;~, J cp) = - ( J ;~ ' cp) = O. (28)

The reader is referred to Morrison's notes for a more detailed description of such varations,
which he refers to as being "dynamically accessible".

1.5 Symmetries and conservation laws

As in textbook classical mechanics (e.g. Goldstein 1980), for any functional F we can defie
a one-parameter family of infinitesimal variations 6:¡u induced by F by

6F6:¡u = €J 6u ' (29)
where € is the infinitesimal parameter. The change in another functional 9 induæd by this
variation is

D.:¡9 = 9¡u + 6:¡u) - 9¡u) = (~~,6:¡U) + 0((6:¡U)2) = €(9,F) + 0(€2), (30)
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where the second step follows from the definition of the fuctional derivative, and the third

step from the definition of the bracket together with (29). This proves
Noether's Theorem: The Hamiltonian is invariant under infnitesimal varations generated
by a fuctional :F, in the sense that ß:¡1i = 0, if and only if:F is a constant of the motion.

Therefore, given a symmetry of the Hamltonian (a variation óu under which the Hamlto-
nian is invariant), one can attempt to solve (29) to find the corresponding invariant (modulo
a Casimir). Equally, given a known invariant :F, one can use (29) to determine the corre-
sponding symmetry.
Exercise: Cyclic coordinates in a finite-dimensional canonical system. If 1i is invariant
under translations in qi (Le. a1ijaqi = 0 for some i), use (29) to show that the correspondig
Pi is a constant of the motion.

As is well known, the KdV equation possesses more than one (non-trivially related)
Hamtonian representation. Consider two representations with cosymplectic forms Ji and
J2. Suppose that ÓUi is a symetry of the system; using Ji with (29) then defines an
invariant II. But knowing II, (29) may now be used with J2 to find a new symmetry, ÓU2.

Then substituting ÓU2 back into (29) with Ji produces a new invarant 12, and so on. This
procedure wil continue indefinitely as long as we keep generating new invariants; in the case
of the KdV equation this turns out to be true, and leads to exact integrabilty. See Olver
(1986) for a more thorough, and highly readable, discussion of this topic.

Returnig to the relation (29), we see that Casimirs correspond to invisible symetries
since

Óeócu = EJ óu = 0 :

Casimrs induce no change whatsoever in the dynamica varables.
Let us now consider some examples of symmetries and conservation laws. First suppose

that the Hamltonian 1i is invariant under translation in time. We can set ó:¡u = -E(aujat)
as the variation in u induced by a shift in time, E = ót. (The minus sign is indeed correct:

think about it!) To fid the corresponding invarant :F we must therefore solve -(aujat) =

J(ó:Fjóu), which implies:F = -1i (to within a Casimi). This shows that 1i is the invarant
correspondig to time-translation invariance. (This statement is not trivial. In particular,
recall the relation d1ij dt = a1ij at in classical mechanics; the former corresponds to a
conservation law, the latter to a symmetry-invariance.)

As another example, suppose that the Hamiltonian 1i is invariant under translation in
space: xh say, for some j. We can set ó:¡u = -E(aujaX;), and to find the corresponding

invariant we must solve -(aujax;) = J(ó:F jóu). In the case of the barotropic vorticity
equation, for example, with j = 1 this becomes

(31)

aw
ax ( Ó:F) ó:Fa w, ów == ów = y

J!Ð yw dxdy = J!Ð y (~~ - ~:) dxdy = J!Ð U dxdy (32)== :F

(to within a Casimir). Therefore the invariant corresponding to x-translation invariance of
the dynamics is seen to be the zonal momentum, as expected.
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For j = 2, simiar considerations lead to

8:F 8:F8(w, 8w) == 8w = -x

- f fÐ xw dxdy = f fÐ x(:; - ~:) dxdy'= f fÐ v dxdy

(also to withi a Casimi). Therefore the invaant corresponding to y-translation invaance
of the dynamcs is seen to be the meridional momentum.

By Noether's theorem, the same construction is guaranteed to work for any continuous
symetry. Let us show it for a rotation. We take the varation to be 8r = 0, 8() = f, where
r and () are polar coordinates defied by x = r cos () and y = r sin (). The correspondig
vaiations in x and y are given by

8w
8y

== :F (33)

8x = -r sin () 8() = -Yf, 8y = rcos()8() = Xf. (34)

It follows that the variation in the dynamca variable w is

8w 8w (8w 8w)
8w = - 8x 8x - By 8y = y 8x - x 8y f.

Then to determne the invarant correspondig to this symetry we must solve (29), which

takes the form

(35)

8w 8wx- - y-8y 8x

== :F =

8:F 8:F 1 (2 2 r28(w, 8w) == 8w = -2 x ty ) =-"2

- f fÐ ~ w dxdy = f fÐ z . (r x v)dxdy (36)

(to within a Casimr). The last computation is obtaied after integrating by pars. As
expected, we obtain the anguar momentum.

1.6 Steadily-translating solutions

Suppose there exists a solution to the system (1) translating steadily in x at a speed c, Le.
u(x, y, z, t) = U(x - ct, y, z). Then clearly

8U 8U
8t = -c 8x . (37)

The fact that the solution is translating in x implies that there is asymetry in Xi if M is
the invariant corresponding to this symmetry, then by (29)

8U _ J8MI
- 8x - 8u u=U' (38)

On the other hand, we have
8U = J81i
8t 8u u=U . (39)
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It follows from (37), (38), and (39) that

J8'H = cJ8M ==8u u=U 811 u=U J8('H - eM) = 08u u::U
8('H - eM + C)

8u =0
u=U (40)==

for some Casimir C. Thus U is seen to be a conditional (or constraied) extremum of the
invarant 'H - eM. We note that (40) provides a varational priciple for travelling-wave
solutions (cf. Benjamn 1984).

2 Hamiltonian structure of quasi-geostrophic flow
In order to ilustrate the general theory of the previous section, we describe in some detai
the Hamtonian structure of what is probably the most widely-used model in theoretical
geophysica fluid dynamcs: quasi-geotrophic flow. Two specifc such models are considered:
the two-layer model in a periodic zonal ß-plane chanel, and continuously stratified flow over
topography.

2.1 The two-layer model

The governing equations may be wrtten (e.g. Pedlosky 1987) as

âqi
at + Vi' Vqi = 0 (i = 1,2), (41)

where the velocity in eac layer is given by Vi = Z X V'li, and the potential vorticity by

qi = V2'li + (-I)iFi('li - 'l2) + f + ßy (i = 1,2). (42)

The parameter Fi is a measure of the stratifcation; if the layer depths are denoted Di, then
we have the geometric constraint DiFi = D2F2. All fields are assumed to be periodic in x.
The boundar conditions at the chanel wals y = 0, 1 are the usual ones of no normal flow,

â'li = 0
âx at y = 0,1 (i = 1,2); (43)

and conservation of circulation,

d ! â'li I - d 0
dt ây dx y=o = - dt'Yi = 0,

!!! â'li dxl =!! t = 0dt ây y=i dt 'Yi (i = 1,2). (44)

The dynamical variables are qi, q2, 'Yl, 'Yf, 'Y~, and 'Yl. We can write the Hamiltonian as

'H = J!Ð ~~DiIV'liI2 + D21V'l212 + DiFi('li - 'l2)2l dxdy, (45)
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in which case

61- J JD iDiVwi' V6Wi + D2VW2' V6W2 + DiFi(Wi - W2)6('li - W2) L dxdy

J fÐ i Di V . (Wi V 6Wi) - Di Wi6V2Wi + D2 V . (W2 V 6W2) - D2W26V2'l2
+DiFi Wi6(Wi - W2) - D2F2 W26(Wi - W2) L dxdy. (46)

To obtai the last line, the relation DiFi = D2F2 has been used. This gives

61- = Di'lily=i61't + Diwily=061'l + D2W2Iy=i61'J + D2W2Iy=061'g

- J fÐ i DiWi6¡V2Wi - Fi(Wi - W2)) + D2W2 6¡V2W2 + F2('li - 'l2)) L dxdy, (47)

from which we may infer

61-
- = -DiWi
6ai

and 6":i = DiWil ¡i = 1,2).
61'i' y=o,i (48)

The fuctional derivatives in this system are evidently analogous to those of the barotropic
system, as described in Section 1.4. Taking the dynamcal variable 'U to be

( 0 i 0 i)T'U = ai,a2,1'i,1'i,1'2,1'2 ,

the cosymplectic form J is clearly

~ ¿i a( ai, . )
o
o
o
o
o

J=

The Casirrrs are of the form

(49)

o

- ¿2a(a2,')
o
o
o
o

o 0 0 0
o 0 0 0
o 0 0 0
o 0 0 0
o 0 0 0
o 0 0 0

(50)

If ;=o,io i 0 i . .C¡ai, a2, 1'i, 1'i, 1'2,1'2) = D i Ci (ai) + C2(a2) L dxdy + .L Cl 'Y,
i=i,2

(51)

where the Ci's are arbitrary functions of one argument, and the Cl's are arbitrar scalars.

It is easy to see that 6C, 6C = C!
~ = Ci(ai), ~ ; i'uai u1'i

whence the condition (11) is verified. To find the steady states, we must solve the followig
extremal equations: for ai,

61i
6ai

6C
6ai

(52)

== DiWi = C;(ai), (53)
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which implies 'Øi = 'Øi(qi); and for 11,

81í 8e
811 - 811

~ D."I'.I - -C!i'li y=j - i' (54)

which implies that 'Øi is constant along the boundares.
To fid the zonal momentum invarant M, we must solve the equations

aqi 1 8M
ax = Di a(qi, 8qi ),

aq2 = J. a(q2, 8M)
ax D2 8q2 (55)

simultaneously. Note that there is no continuous symmetry for 11. -The solution (to within
a Casimi) of (55) is evidently

8:: = DiY ~ M = ! fÐ r Diyqi + D2yq2 J dxdy,

again analogous to the barotropic cae. Using the defition of qi,

J a2'l a2'Ø a2'Ø a2'ØM !Ð yr Di ( ax21 + 8y21) + D2( ax22 + ay22) + (Di + D2)(1 + ßy) J dxdy

r y ! (Di aa'Øi + D2 aa'Ø2) dxJ y=i - !!r r Di aa'Øi + D2 aa'Ø2 J dxdy + const.L y y 11=0 D Y Y
Di".t: + D2"Y~ + !!Ð (Diui + D2U2) dxdy + const. (57)

(56)

The fist two terms of the above expression are Casimirs, while the spatial integral represents
the zonal momentum.

2.2 Continuously stratified flow over topography
In the above sub-section we have shown how to handle the circulation terms on the side walls,
so to simplif the following manpulations we now restrict our attention to the case where
the circulation is held fied when penorming the variations. We again consider a periodic
zonal channel, bounded top and bottom by rigid lids, with 0 :5 z :5 1. The dynamics is given
by (e.g. Pedlosky 1987)

Dq _ aq

Dt = at +a('Ø,q)=0 (0":z":1),D D
Dt ('Øz + ISh) = 0 (z = OJ, Dt ('Øz) = 0 (z = 1),

where the potential vorticity q is defined by

(58)

(59)

1 (PS )
q = 'Øxx +'Øyy + - -S'Øz + I + ßy.ps z (60)

The density Ps(z) and stratification fuction S(z) = N2 / P (where N(z) is the buoyancy
frequency) are both prescribed, h(x, y) is the topography at the lower sunace, and 'Øz is
proportional to the temperature.
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The dynamical boundar conditions (59) on the lids z = 0, 1 are necessar, and represent
true degrees of freedom. This can be seen by vang 1í:

implies

81í

1í= IlL ~iIV7l12+ ~7l~JdxdYdz (61)

f f L ps i V 7l . V 87l + ~ 7lz87lz ) dxdydz

If L i -Ps7l8V27l + :z (~ 7l87lz) -7l :z (~ 87lz) ) dxdydz

(f f ~ 7l87lz dxdy J ::~ - f f !Ð Ps7l8q dxdydz
(62)

(noting that the variations in the side-wall circulations have been taken to vansh). In
particular, we canot write 81í = ((81íj8q),8q) uness we treat the terms in (62) involvig
the spatial integrals over the lids.

One option is to make the lids isentropic: 7lz = constant. Then in a completely analogous
fashion to the way in which one may elimiate the circulation term, one may restrict
attention to varations with 87lz = 0 on z = 0,1, in which cae the integrals over the lids in
(62) disappea. Note that this is dynamcally self-consistent: from the governng equations,
it follows that isentropic lids remain isentropic under the dynamcs. Pursuing this option
leaves us with a dynamcal structure very sirrlar to that of the barotropic system, but this
is very restrictive indeed. For example, it elimiates the meridional temperature gradient at
the lower surace which is so crucial in drving the atmospheric circulation.

A better option is to incorporate the terms in question into 81í. This ca be done by in-
troducing additional dynarrcal variables, just as one may introduce the side-wall circulations
as dynamical variables (see previous sub-section). It is natural to define

Ào = ~(7lz + jSh)lz=o' Ài = ~7lzlz=i' (63)

in which case (59) take the form
DÀo = 0Dt '

,,:,
j
J

DÀi = 0Dt . (64)

Then (62) can be written

81í = f f 7l8Ài dXdylz=i - f f 7l8Ào dxdylz=o - f f !ÐPs1/8qdxdydz; (65)

the entire variation of 1í is now captured, with the functional deriv!ltives
81í
8q = -Ps7l,

81í - -7l1

8Ào - z=O'
81í - 7l1

8Ài - z=i' (66)

Taking the dynamical variable to be u = (q, Ào, Ài)T, the cosymplectic form is evidently

(-:s8(q,.)
J= 0

o

o )o .
8(Ài,.)

o

-8(Ào, .)
o

(67)
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The Casimirs are clearly of the form

C(q, ,xo, ,xl) = J J!Ð PsC(q) dxdydz + J J Co(..) dXdy/z=o + J J C1(,xl) dXdylz=1 (68)

for arbitrar fuctions C, Co, and C¡, with

8C '( )
8q = PsC q , :~o = C~(..),

8C '()
8,xi = C1 ,xl , (69)

which when combined with (67) may be seen to satisfy (11).
The steady-state solutions satisfy

8'H 8C
8q - - 8q ,

which implies Ps'l = PsC'(q) and thus 'r = 'r(q); and

8'H 8C .
8,x¡ = - 8,x¡ (i = 0, 1),

which implies (-1 )¡'r = CH,x¡) and thus 'r = 'r(,x¡) on z = i.
To fid the zonal momentum invaant M, we must solve the equations

(70)

(71)

8q = 2-8(q, 8M),
8x Ps 8q

8,xo ( 8M)
8x = 8 ,xo, 8.. '

8,xi = -8(,x 8M)
8x 1, 8,xi (72)

simultaneously; the solution (to withi a Casimir) is

M = J J !Ð psyq dxdydz + J J y,xo dxdylz=o - J J y,xl dxdylz=1 . (73)

Exercise: Show that (to within a Casimi) M = IIIDPsudxdydz.

3 Pseudoenergy and avalable potential energy
3.1 Disturbances to basic states
Very often one is interested in flows that are close to some given basic state. Examples
include the energetics of waves, stabilty and instabilty of basic flows, wave propagation in
inhomogeneous media, and wave, mean-flow interaction. We would therefore like a Hamilto-
nian description of the disturbance problem. Idealy it should be exact, i.e. nonlinear. Two
questions immediately arise: What is the correct Hamltonian? What is the energy? The
answer to these questions involves a new quantity, often referred to as the pseudoenergy. One
of the simplest contexts in which the relevant issues arise is the familar and classical one of
available potential energy (APE), so we shall discuss it at some length. FUther details may
be found in Shepherd (1993a).
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3.2 APE of internal gravity waves
Consider the energy of internal gravity waves in an incompressible, Boussinesq fluid, governed
by the equations ( V) fA Vp P A (74)Vt + v. v + z x v = -- - -gz,

Poo Poo

Pt + v . V P =0, V . v = 0, (75)
where Poo is a constant reference density. The notation is standard. The resting basic state

on which the waves exist is assumed to have a horizontally urform density P = Po(z), with
stable stratification: g(dpojdz) c( O. The kinetic and the potential energy per urt volume
are given by

EK = ~poolvI2, Ep = pgz. (76)
Since it integrates to a constant, we might as well remove Pogz from the potential energy.
This leaves Ep = (p - Po)gz. (77)
Now, for small-amplitude waves, EK = 0(a2) but Ep = O(a), where a ~ 1 is the wave

amplitude. This is odd, for a number of reasons. First, EK .(.( Ep, which is counter-intuitive
(one expects the two form of energy to be of the same order); second, Ep is not sign-defite;
and third, the disturbance energy canot be calculated to leading order from linear theory.
To see this, consider a solution involving a perturbation expansion in some small parameter
ê:

p - po = epi + ê2P2 + ... , v = êVi + ê2V2 + .... (78)

The subscript 1 varables would be determined from linear theory, the subscript 2 varables
from second-order nonlinear theory, and so on. Expanding the energies in terms of ê yields

1 2 2 3EK = 2"poolvil ê + O(e ), Ep = Pigzê + P2gzê2 + 0(ê3). (79)

If we are considering sinusoidal waves then Pi = 0 but P2 =l 0 in general, where the overbar
denotes an average over phase. Therefore to determne Ep at leading order, P2 must be
determned; but this requires a solution of the nonlinear problem.

All these diffculties arise from the fact that the expression for Ep is formally O(a).
Fortunately, however, there is a remedy. 1laditionally (e.g. Hollday & McIntyre 1981)
it is presented as a trick. For incompressible fluids, (75) implies that fffD F(p) dxdydz is
conserved for any function F(.). For a statically stable basic state Po(z), the inverse fuction
z = Z(Po(z)) is well defied. We may then take

F(p) = - jP gZ(p) dp, (80)

and note that
j j fÐ ~ EK + Ep + F(p) - F(po) L dxdydz (81)
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is conserved. That is, we combine energy conservation with mass conservation, to obtai a

new conserved quantity with density per unt volume given by

EK + Ep + F(p) - F(Po)1 2 fP
2'poolvl + (p - Po)gz - 1pO gZ(p) dp1 r-pO
2'Poolvl2 + (p - Po)gz - 10 gZ(Po + p) dp
1 r-Po
2'poolvl2 - 10 9 (Z(Po + p) - Z(Po)) dp.

The smal-amplitude approxiation to A (appropriate for waves, say) is

A

(82)

A 1 I 12 1 '()( )2 1 2 1 9 2~ -Po v - -gZ Po P - Po = -Polvl - --(p - Po) .2 2 2 2ph(z) (83)

The second term in (83) is the familiar expression for the APE of internal gravity waves (see
e.g. Gil 1982, §6.7 or Lighthil 1978, §4.1). The conserved quantity A has the properties
we would expect from a disturbance energy: A = O(a2); A )- 0 if the background is stably
stratified (this is also true at finite amplitude); and A is caculable to leading order from the
linearzed solution. In textbooks, the small-amplitude form is derived by diect manpulation
of the lineared equations - thereby obscurng the fact that mass conservtion has been

used.
Other cases where a simar situation arses include the energy of acoustic waves (Lighthill

1978, §1.3) and the APE of a hydrostatic compressible ideal gas (Lorenz 1955).

3.3 Pseudoenergy

When one considers the wide variety of situations in which the concept of APE arses,
certain questions naturally arise. In particular: Why do other conservation laws (like mass
conservation) need to be brought in? Which conservation laws are needed? Is there a

systematic way to construct the APE? Does the conæpt extend to arbitrar fluid systems?
And does it extend to non-resting basic states?

It turns out that these questions can al be answered by considering thigs within the
Hamiltonian framework. Since fluid systems are generally non-canonical, perturbing a steady
state U with a variation óu wil give rise to a change in the Hamltonian

ß1-(U; óu) = 1-(U + óu)-1-(U) = (~1- ,óu) + O((ÓU)2). (84)uu u=U.. ~
T
lo

This is the reason why there is an O(óu) = O(a) term in the expression for potential energy.
For canonical systems, the underbraced term would vanish and the change in the Hamiltonian
would automatically be quadratic in the disturbanæ amplitude. This is not the case here,
but we know that generically there exists some Casimir C such that

~ lu=u = - ;~ I..u . (85)
ILl-



So if we choose

A(U; 6uj = 1-(U + 6uj-1-(Uj + C(U + 6uj- ClUj, (86)

with C determined by (85), then we wil have a quantity which by construction satisfies

6A _ (611 + 6C) _ 0
6u u=U - 6u 6u u=U - .

Hence A(U; 6uj = O((6U)2), and we have what we want.
This quantity A is the pseudoenergy (e.g. McIntyre & Shepherd 1987). It is an exact

nonlinear invariant of the equations of motion. Its construction involves a combination of
energy and a suitable Casimir. For disturbances to resting basic states, these Casimirs
invariably involve mass conservation. The avaiable potential energy is evidently the non-
kinetic par of the pseudoenergy. To construct the available potential energy, therefore, we
need only know the Hamiltonian 1-; the dynamc variables, i.e. the fields u; and suitable
Casimirs C such that (85) is satisfied. One may well know these thigs without knowing J,
in which case the Hamltonian structure underlies the method without appearng explicitly.

Prescient adumbrations of the above realization can be found in the classica GFD lit-
erature. In a brillant and now largely forgotten paper, Fjørtoft (1950) noted that (stably)

stratified, resting basic states were energy extrema for adabatic disturbancesj this varia-
tional principle corresponds to the Hamltonian statement that resting steady states are
conditional extrema of the Hamtonian, with the relevant Casimirs being those arsing from
the material conservation of entropy. Buildig on Fjørtoft's work, Van Mieghem (1956) used
this variational priciple to construct a small-amplitude expression for APE, thereby recov-

ering the formula of Lorenz (1955). This ca now be seen as the non-kinetic part of the
small-amplitude (or quadratic) pseudoenergy.

Having examined this problem from the Hamiltonian standpoint, the questions raised at
the beginning of this sub-section may be answered immediately.
Question: Why is energy not good enough? Why do other conservation laws (like mass
conservation) need to be brought in?

Answer: Because the Eulerian descriptions of fluid motion are generally non-canonical,
which means that steady states are not necessarly energy extrema.
Question: Which conservation laws are needed?
Answer: Those associated with the non-canonical nature of the dynamics: the Casimir
invariants.

A(UjOj = 0 and (87)

Question: Is there a systematic way to construct the APE?
Answer: The APE is the non-kinetic part of the pseudoenergy relative to a resting basic
state.
Question: Does the concept extend to arbitrary fluid systems?
Answer: Yes, provided the system is Hamltonian.
Question: And does it extend to non-resting basic states?
Answer: In principle, yes - provided the pseudoenergy is sign-definite. See Section 4.3 for
further discussion.
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3.4 Example: stratified Boussinesq flow
The algorithm described above for constructing the APE wil now be demonstrated in the
context of 3-D, incompressible, stratifed, Boussinesq flow, governed by (74,75). The dynam-
ica variables are evidently p and v. The Hamltonian is given by- 1

11 = J J 1Ð ~ 2Polvl2 + pgz J dxdydz, (88)

with fuctional derivatives 611 611
6v = Pov, 6p = gz. (89)

The determnation of an appropriate J gets us into the issue of constrained dynamcs (see
Abarbanel et ai. 1986; also Salon 1988a), but for our purose only the invarants 11 and C
are required. An unconstraied Hamltonian representation of this ~ystem', in the form (1),
can be obtained by working in isentropic - or, in this cae, isopycnal - coordinates (Holm
& Long 1989), but for applications it is desirable to have an expression for APE in physical
coordinates.

What are the Casimirs for this system? It can be veried that the potential vorticity
q = w. Vp, where W = V x v, satisfies

qt + v . V q = O.

Putting (90) together with (75) implies that

C(v,p) = IlfÐ C(p,q)dxdydz

(90)

(91)

is a class of conserved quantities for arbitrar fuctions C. These are in fact the Casims, as
can be verified by examnig the system in isopycnal coordinates. However, such verification
is not actualy necessary: usually one can guess the Casirrrs based on knowledge of the

materially conserved quantities; if one canot satisfy the condition (85), then one must
consider a broader class of conserved fuctionals.

Takng the fist varation of C gives

6C
I I fÐ ~ Cp6p + Cq6q L dxdydz

II fÐ ~ Cp6p + Cq((V x 6v). Vp + w. V6PiJ dxdydz. (92)

After integration by parts, one obtains
6C
6p = Cp - V . (Cqw),

6C .
6v = V x (CqVp). (93)

We may now follow the recipe set forth earlier. Given a steady state U = (0, Po(z)), C is
determined from the condition

611
6v u=U

6C
6v u=U ~ PooV = -V x (Cq V p) at p = po, v = 0

~ 0 = V x (CqVpo), (94)
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which will be satisfied if we take C = C(p), in conjunction with the condition

f/H
8p u=u

8C
8p u=u ~ gz=-Cp+V.(Cqw) at P=Po,v=O

~ gz = -Cp at p = po. (95)

Now Po(z), being monotonic by hypothesis, has a well-defied inverse, Z: Le. z = Z(Po(z)).
It ca be easily seen that

C(p) = - jP gZ(p) dp

satisfies the required condition (95):
(96)

Cpl = -gZ(Po) = -gz.
p=pa (97)

(It is in fact a general result that when the basic state is at rest, only that part of the Casimir
depending on the density (or more generaly, the entropy) needs to be considered; possible
dependence on the potential vorticity is not required (see Shepherd 1993a). This is why
Fjørtofts (1950) variational priciple could descnbe all resting steady states.)

With this choice of C, the pseudoenergy takes the form
\

A 1-(v, p) - 1-(O, Po) + C(v, p) - C(O, Po)

j j 1Ð i ~poolvl2 + (p - Po)gz - j~ gZ(p) dp J dxdydz

j j 1Ð i~Poolvl2 + (p - Po)gZ(po) -lP-fJ gZ(po + p) dPJ dxdydz

j j fÐ i ~poolvl2 -lP-pa g(Z(po + p) - Z(Po)) dp J dxdydz.'" .. ~
APE

(98)

This recovers the expression (82) obtained earlier by direct methods. Note that provided
g(dpo/dz) -c 0, then g(dZ/dpo) -c 0; thus the APE, and in consequence A itself, wil neces-
sary be positive definite for p - Po -¡ O.

The fiite-amplitude expression for APE provided above has a simple geometrical inter-
pretation: the APE is 9 times the area under the curve Z(p) (see below).

2L
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3.5 Nonlinear static stability
The existence of a positive definite conserved quantity suggests stabilty. Of course, the

condition g(dpo/dz) .. 0 is precisely the condition for static stabilty. Note that 8A = 0 by
construction while the second variation of A is

82 A = J J!Ð ~rpooI8vI2 - r1~z) (8p)21 dxdydz )- O. (99)

Thus by analogy with finite-dimensional systems, statically stable equiibria are ellptic fied

points. This is what is usually referred to as formal stability (e.g. Holm et al. 1985; see also
Morrison's lectures). However, for infnite-dimensional (or continuous) dynamical systems,
such as fluids, mere positivity of the second vaiation does not, in itself, establish anythig
about stabilty. Instead, one must attempt to obtain explicit bounds on the growth of dis-

turbance norm. One might think it wise to begin with the linearzed equations; however,
if stabilty is established in the linear dynamcs this proves nothing for the actual dynam-
ics, since the system is Hamltonian. (Stabilty ca never be asymptotic for Hamltonian
systems.) Thus one is forced to consider the ful nonlinear dynamcs right from the star.

Definition: (Normed Stabilty) If we measure the deviation from a paricular steady field
U by the norm lIu'll, where ii = U + ii', then U is stable in that norm if for any € )- 0 there
exists a 8 ( €) )- 0 such that

lIu'(O)11 .. 8 == Ilii'(t)II.. € , Vt ~ o. (100)

This is also called Liapunov stability.

In the present context we may define our norm by

II(v,p - Po)W = J J!Ð ~rpoolvI2 + Ã(p - po)21 dxdydz,

f Cl = mini -gZ'(po) L )- 0

with Ci.. À ~ Ci where
Ci = maxi -gZ'(po) L .. 00.

The existence of such constants Ci, Ci wil be referred to as the convexity condition.
these circumstances it can be shown that the available potential energy,

(101)

(102)

Under

r-PoAPE = - 10 g(Z(po + p) - Z(Po)) dp, (103)

is bounded from both above and below:1 2 1 2
'2Ci (p - Po) ~ APE ~ '2C2(p - Po) . (104)

If Z(Po) is smooth then this result follows immediately from Taylor's remaider theorem.
However, it is true for Z(Po) that are only piecewise differentiable. This bound on the APE,
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coupled with the fact that the pseudoenergy A is conserved, lead to the followig chain of

inequalties for basic flows satisfying the convexity condition (102):

II(v, P - Po)(t)112 J J!Ð ~iPolvl2 + À(p - Po)2J(t) dxdydz

-: !.A(t) = !.A(O) ~ C2 II(v, p - Po)(O) 112. (105)~ ~ ~
By takng 8 = vci!Oi€, (105) proves nonlnear normed stabilty in the norm defied by (101).

It is well known that the smal-amplitude defition of APE is closely connected to lin-
earized static stabilty. The above results show that the defition of finite-amplitude APE
is closely connected to finite-amplitude static stabilty.

A comment should be made concerning the defition of the function Z (.) used to calculate
the pseudoenergy, which appears in the integrand of expression (103) for the APE. What if
p lies outside the range of Po? How do we evauate Z(p) in that case? First note that if a
disturbance is "dynamically accessible" (see Morrson's lectures) then p always lies withi the

range of po. However if one is interested in a larger class of disturbances, then the defition
of Z (p) ca be extended outside the range of Po while stil keeping A as a conserved quantity.

This is because any function C(p) can be used to obtai a Casimir. In fact, it is only the
condition that A = O( a2) in the smal-amplitude limit that determied the paricular choice
of C involvig Z, and this constraint only determnes C for values of its arguent lying
withi the range of Po. So to allow the possibilty of arbitrar disturbances, the expression

(103) ca stil be used provided we extend the fuction Z(p) outside the range of Po in some
arbitrar way, subject only to

ci ~ -gZ'(p) ~ Oi

in order not to weaken our bounds. Clearly, this extension can always be made.
(106)

3.6 Nonlinear saturation of instabilities
The APE provides a rigorous upper bound on the saturation of static instabilties. In a
way, this is a more robust defiition of static stabilty than the concept of normed stabilty
presented in the previous sub-section.

To see this, consider the case of a fluid that is initially at rest but statically unstable.
We may consider this initial state to be a (fite-amplitude) disturbance to some statically
stable, resting basic state. Using conservation of the pseudo energy relative to this basic
state, and noting that v(t = 0) = 0 by hypothesis, yields

J J fÐ ~poolvI2(t) dxdydz ~ A(t) = A(O) = J J fÐ APE(O) dxdydz. (107)
Thus the kinetic energy at any time t is bounded from above by the initial APE: this is, after
all, why it was called "available" by Lorenz. For example, consider the situation sketched
below.
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The initial density profie p(z) is shown by the solid line, and consists of a statically unstable
inversion layer -t:z ~ z ~ t:z located within a stably stratifed region with dp/dz = -r.
Suppose for defiteness that p(z = 0) = O. (Recall that p is the departure from the referenæ
state Po, and therefore may be negative.) One may choose as the basic state t)(z) = -rz,

which is stable and which satisfies (102) with Ci = Ci = gIro The initial disturbanæ is then

i f ~p z, if -t:. z ~ z ~ t:zp =p-¡J= uZ
0, otherwse.

i
\ .

(108)

The integrated APE (averaged in x and y) is then eaily computed, yielding the saturation
bound

J J!Ð ~poolvI2(t) dxdydz ~ ir (ßp)2ßZ. (109)
It is interesting to note here that the disturbance p' is not, in general, dynamcally acæssible;
or, rather, the initial condition p(t = 0) is not dynamcally acæssible from the basic state
Po(z). It would only be so in the special cae t:p/t:z = r. The bound represented by (109)
therefore highlights the fact that pseudoenergy conservation holds for arbitmry disturbances,
not just dynamcally acæssible ones. It also demonstrates that, in many practical caes of
interest, the freedom to consider disturbances that are not dynamcay accessible is quite
usefuL. The original, physical definition of APE proposed by Margues (1903) and formalized
by Lorenz (1955) was keyed around the idea of dynamically accessible perturbations: the
APE was defined to be the amount of energy released in an adiabatic rearrangement of the
mass into a statically stable state. The variational approach of Fjørtoft (1950) and Van
Mieghem (1956) likewise builds dynamcal acæssibilty directly into the theory. In contrast,
the use of integral invariants, in particular the pseudoenergy, goes beyond this in a powerful
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way: the basic state may be any statically stable state, not just the dynamcally accessible
one. This insight was first noted by Hollday & McIntyre (1981) and Andrews (1981), and
is vividly demonstrated by the above example.

One may logically define the APE in (107) to be the iinimum APE over all possible
choices of the stable basic state. This extreiization problem is higWy non-trivial, and would
make a good topic for further study from a mathematical perspective. In the above example,
for instance, the expression (109) is merely one bound, not necessary the rrmum one.

Exercise: Calculate the amount of APE in the initial condition of the above example,
takng the basic state Po(z) to be the unique, dynamically accessible state obtained through
an adabatic rearrangement of the mass.

There is a well-known analogy between static stabilty and so-called symmetric stability:
namely the stabilty of a baroclinic flow to disturbances that do not var in the downstream
direction (also known as "slantwise convection"). This analogy has recently been exploited
by Cho, Shepherd & Vladiirov (1993), who prove a nonlnear stabilty theorem and use it
to determne a fite-amplitude APE for such motion.

4 Pseudoenergy and Arnol'd's stability theorems
4.1 Arnol' d's stability theorems

In the previous section the steady basic state was at rest, so the kietic energy contribution
to the pseudoenergy was solely the disturbance kinetic energy. But what happens when
the kinetic energy of the steady state is nonzero? To explore this question, we study the
barotropic vorticity equation on the ß-plane (cr. §1.4)

~+a(q.,p)=o, (110)

where ~ is the stream function, P is the potential vorticity

P = V2q. + f + ßy + h(x,y), (111)

and h is the topographic height. Three possible geometries are considered: (i) periodic in
x and y; (ii) unbounded, with decay conditions at infity; and (ii) multiple boundaries (as

with a zonal channel). The last case is the most complicated, since the boundar terms enter
the equations directly, so we choose to analyze it.

Suppose there exists a steady solution, q. = w, P = Q with \I = \I(Q) a monotonic
function. We seek Casiiirs such that 8A = o. We have

1- = !!Ð ~IV~12dxdY, (112)

c = !!Ð C(P) dxdy + ~aiJ.,
i

(113)
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where J.i = JaD¡ V~. nds is the circulation on each connected piece, aDi, of the boundar
aD. To deteITne the pseudoenergy, we must solve the equations

81-1 8e 1
8P P=Q = - 8P P=Q ,

The left half of (114) gives (see §1.4)

::lp~Q = - :,I,;~.
(114)

'I = C'(Q), (115)

which integrates to
C(Q) = jQW(T/)dT/, (116)

while the right hal of (114) gives

'11 = -a¡.
aD¡

If we consider the disturbance problem
(117)

P = Q + q, ~ = 'I + 'l, J.i = r i + 'Yi,

then noting that q = V21/ we construct the finite-amplitude pseudoenergy as follows:

(118)

A 1-rQ + q, ri + 'Yi)-1-rQ, ri) + CrQ + q, ri + 'Yi) - CrQ, ri)

J Iv iV'l' V1/ + ~IV'l12 + faQ+a W(q) dq) dxdy + ~a¡ryii

J Iv iv. (wV'l) - WV2'l + ~IV'l12 + foa W(Q + q) dq) dxdy - ~ '1 laD¡'Yi (119)
i

In the last line, the fist term can be directly integrated and found to cancel the boundar
circulation term. Fuhermore, noting that

2 ra- wV 'l = -Wq = - 10 w(Q), (120)

the pseudoenergy can be written simply as

A = J fÐ i ~IV'l12 + foarW(Q + q) - '1 (Q)) dq) dxdy (121 )

(McIntyre & Shepherd 1987). The pseudoenergy is an exact, nonlinear invaant, as may
be checked by direct substitution into the equations of motion. It is valid for arbitrary
disturbances (not necessarily dynamicaly accessible ones). If there exist values of Q + q
outside the range of Q, one can extend the definition of w(Q) arbitrarly to cover those
values, as discussed in §3.5. A is evidently sign-defiite when

dw
dQ ::0. (122)

Essentially, this is Arnol'ds (1966) first stabilty theorem.
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Suppose that

Ci = ~nf:) ~ 0, Co = Tf~~) -( 00. (123)
In this case we ca establish normed stabilty of the basic state. The "convexity" condition
provides 1 rq 1

2"ciq2 ~ 10 (w(Q + (j) - w(Q)) d(j ~ 2"Ciq2" (124)
which is vald for continuous (possibly non-smooth) w(Q). In paricular, let us choose the
norm defied by

IIql12 = ! Iv ~iIV?l12 + Àq2) dxdy, (125)

with Ci -c À ~ C2. Then

IIq(t)1I2 ~ ~A(t) = ~A(O) ~ C21Iq(0)W.Ci Ci Ci (126)

So given f ). 0, choose 8 = VCdCif to prove nonlinear normed stabilty. As with static
stabilty, this holds for arbitmrily large disturbances.

It is important to emphasize that the demonstration of normed stabilty provided above
depends on the choice of norm. For normed stabilty, it is always essential to specify the
norm; this is because in inte-dimensional spac, all norm are not equivalent. This point
is highighted by the following example.

Consider (110) in the special cae P = yr2q" and introduce a basic state U(y) = Ày. The
disturbance (q, 'l) is given by

P = Q + q = -À + q, 1 .q, = 'I +?l = -2"Ày2 +?l, (127)

and the exact equation for the disturbance vorticity q = yr2?l is

qt = -8(w,q) - 8(?l,Q) - 8(?l,q) = -Àyqx - 8(?l,q). (128)

Multiplying (128) by q and integrating over the domai yields

dl112- -q dxdy
dt D 2 - J!Ð Àyqqx dxdy - J!Ð q8(?l, q) dxdy

- J fÐ:X (~Àyq2) dxdy - J fÐ 8(?l, ~q2) dxdy
O. (129)

This proves that 2-D linear shear flow is stable in the enstrophy norm. However, consider an
initial condition consisting of a plane wave q(t = 0) = ~-£ei(kx+IOY)l. Then the disturbance

energy is given by (e.g. Shepherd 1985)

£( ) = I. r ~IV"I.12( ) d d = lID 4q2(t) dxdy = lID 4q2(0) dxdyt 1 D 2 0/ t x Y k2 + l2 k2 + l2 . (130)
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It can be shown that 1 evolves with time accrding to 1 = lo + Àkt, while k is constant. So
for lo c: 0 and Àk ;: 0, the energy will attai its maxmum amplification

£(t) k2 + l~ -lo
£(0) k2 at t = kÀ' (131)

Clearly, the amplifcation described by (131) becomes arbitrary large in the limit Ilol -+ 00.
This example demonstrates the point that stabilty in one norm (here the enstrophy) does
not imply stabilty in another (here the energy).

Returning to the general form of (nO), consider the special case of zonal (x-invarant)
flow, with h = O. Then the condition

dw Vw wy -u
dQ = VQ = Qy = Qy ;: 0 (132)

is sufcient for stabilty of the flow. This is the nonlnear generalzation of the result of

Fjørtoft (1950).

There is an interesting possibilty in this barotropic case which did not arse in the previ-
ously discussed case of static stabilty. Recall from §3.5 that in that case the pseudoenergy
was given by

A = !! fÐ r ~poolvl2 + APE(p - Po) L dxdyd;. (133)
Since p and v are independent variables, A can never be negative definite. This is like the
case of "natural systems" discussed in tradtional classica mechanics. In the present case,
however, there is only one dynamcal varable, and in principle A could be negative defite.

This gives what is caed Arnol'd's (1966) second stabilty theorem.

How does this happen? Suppose

~ "0 and Cl = in~ - ~~);, 0, Ci = in~ - ~) 00. (134)

Then

1a (w(Q + ij) - w(Q)) dij ~ -~Ciq2, (135)
so this quantity has the potential for being more negative than 41V'Ø12 is positive, when

integrated over the domain. In fact, for bounded domains this is possible. A detailed
discussion is provided in McIntyre & Shepherd (1987, §6).

4.2 Andrews' theorem
The appearance of Arnol'd-type stabilty arguents created considerable interest in the
meteorologica community, for it appeared that they could be used to examine the stabilty
of non-parallel flow profiles W = w(Q). However, Arnol'd's theorems turn out to be not as
powerfu as they might seem in this regard. A theorem proved by Andrews (1984) shows

this quite succinctly, as follows.

Suppose we are given a basic flow profie W = w(Q), and suppose that the given problem
is zonally symmetric: i.e. h = h(y), and the boundaries (if any) are independent of x. A
zonal channel would be the most common such geometry.
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Claim: If ~~ /0, then Qx = 0 and Wx = O.

Proof: The chain rule of differentiation implies

Wx = w'(Q)Qx' (136)

Multiplying this expression by Qx and integrating over the domain yields

J fÐ wxQxdxdy

~ J!Ð wxV2wxdxdy

~ J fÐ V. (WxVWx)dxdy

J JD w'(Q) (Qx)2 dxdy.

J!Ð w'(Q) (Qx)2 dxdy

J!Ð ilVlJxl2 + w'(Q) (Qx)2l dxdy. (137)

The integral on the left-hand side vanishes if the boundares are zonally symetric, which
implies that lJx = 0= Qx everywhere.

Therefore, any flow in a zonally symmetric domain that is stable by Arnol'd's first theorem
must itself be zonally symmetric! The argument can also be shown to apply to Arnol'd's
second theorem (Carevale & Shepherd 1990). These results help explai the conspicuous
lack of non-zonal Arnol'd-stable flows in the literature.

There is a simple heuristic explanation of Andrews' theorem. If a problem is zonally
symmetric, but the basic state is non-zonal, then a possible disturbance is the simple one
generated by a zonal translation of the basic state. This zonal translation canot change the
pseudoenergy. Therefore, such basic states canot be true extrema of the pseudoenergy-
eqlUvalently, A is not sign-defite - which implies that they cannot be Arnol'd stable.

However, it should be noted that Andrews' theorem may not apply to certai zonally

symmetric problems in unbounded domains because of the boundary conditions at infi-
ity (Carnevale & Shepherd 1990). Otherwise one could deduce, for example, that circular
vortices were not Arnol'd stable - something which is demonstrably untrue.

4.3 A vailable energy

Can we regard the quantity

foa(W(Q + ij) - w(Q))dij (138)
as a generalization of APE? In a sense, yes. For any stable flow (lJ, Q) with dlJ /dQ / 0, we
have

J fÐ ~IV7/12(t) dxdy ~ A(t) = A(O) = A(Q; q(O)).
(139)

For a given initial condition, P(O), one can vary the right-hand side of (139) over various
stable Q to seek the tightest possible bound on the disturbance energy.

In the case of static stabilty, the variations were over Po and didn't afect ~lvI2. Here
7/ = ~ - lJ, so when one changes the basic flow, one also changes the definition of the
disturbance. This is not a satisfactory situation.
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Suppose, however, that the problem is zonaly symetric and that one is interested in
the eddy energy. We may write

~ = ~ + ~' where D = x-average and ~, = O.

Then, if we choose a zonally symmetric flow (as required by Andrews' theorem), i.e.
(140)

W' = 0, Q' =0, (141)
this implies 4,' = 1/', P' = q. (142)
Hence (q', 'l') are independent of the choice of the basic state. Then, for the eddy energy we
have the upper bound

£' = J fÐ ~IV~'12(t) dxdy = J fÐ ~IV1/'12(t) dxdy ~ J fÐ ~IV'l12(t) dxdy
~ A(Q; q(O)). (143)

Now one can va the right-hand side of (143) to seek the tightest possible bound on theeddy energy. ,
We now ilustrate the general method by applying it to the cae of baroclinic flow.

4.4 Nonlinear saturation of baroclinic instability
The two-layer model was presented in §2.1. The notation has been changed somewhat for
convenience; q there corresponds to P here, while 1/ there corresponds to ~ here. Fuher
details of the followig analysis may be found in Shepherd (1993b).

Suppose Fi = F2 = F in the domain 0 ~ y ~ 1, periodic in x. The potential vorticity in
each layer is given by

p¡ = V24,i + (-I)iF(~i - 4,2) + f + ßy (i = 1,2). (144)

Consider the basic-state stream function Wi = Wi(Qi) corresponding to the purely zonal flow

Ui(y) = -dWi/dy (i = 1,2), (145)

"
:i ~ J.
~t.~~
L

r:with potential vorticity

Qi(y) = V2Wi + (_I)i F(Wi - W2) + f + ßy (i = 1,21. (146)

Let 'li be the disturbance stream function, so that

~i = Wi(y) + 1/i(X, y, t) (i = 1,21. (147)

This allows the pseudoenergy to be written

A = J fÐ t ~ (IV1/iI2 + IV1/212 + F(1/i -1/2)2)

+ gal(Wi(Qi + ij) - wi(Q¡)l dij + ga2(W2(Q2 + ij) - w2(Q2)1 dij L dxdy, (148)
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where ai is the disturbance potential vorticity2 .
ai = V 'li + (-I)'F('li - 'l2) (i = 1,2).

It is clear from (148) that if
(149)

dwi 0
dQi )- and dW2

dQ2 )- 0, (150)

then A)- O. This is Arol'ds first stabilty theorem applied to quasi-geostrophic flow (Holm

et al. 1985). Sinæ we are considering the zonally symetric cas, these conditions are

satisfied if (J. .dQiidy ot 0 (i = 1,2); (151)
put this way, the theorem represents the nonlinear version of the Fjørtoft-Pedlosky theorem.

Suppose our initial condition consists of an inftesimal disturbanæ to the Philips zonal
flow 8~1 A ß M2 A

- 8y = Ui = F(1 + €) + Uo, - 8y = U2 == Uo, (152)
where Uo is an arbitrar constant. The flow (152) is known to be unstable if € )- 0, provided
the domain is sufciently wide in an appropriate sense (e.g. Pedlosky 1987, §7.11).

Now choose a one-parameter famly of stable basic flows

- 8'11 = Ui = ß (1- 15) + Uo8y F '
with associated potential vorticity

8'12
- 8y = U2 = Uo, (153)

Qi = ß(2 - ó)(y - À) + f + ßÀ, Q2 = ßó(y - À) + f + ßÀ, (154)

where À is a constant of integration. We have three free parameters: À, Uo, and Ó. For al À,
Uo, and 15 such that dWi/dQi )- 0 we then have the rigorous upper bound on the eddy energy

£' J!Ð ~iIVq,~12 + IVq,~12 + F(~~ - ~~)2J dxdy

ot J!Ð ~i IV'liI2 + IV'l212 + F('li - 'l2)2J dxdy

ot A(t)

A(O)
ß2( ~~ 15)2 t ~ (1 + F g\y - À)2dY)

_~(ß(I- 15) + UoF + Uo)F2 fl( _ À)2d 12 ßF(2 - 15) ßó 10 y y J
+ terms involving the initial non-zonal disturbance. (155)

The contribution to the initial pseudoenergy associated with the initial non-zonal disturbance
can, of course, be included in the above bound. However, in the situation we are considerig
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here of an infinitesimal initial disturbance to the Phillips initial condition, this contribution
is negligible compared with the pseudoenergy arising from the zonal-mean part of the initial
disturbance to the stable basic flow, which is the par written out explicitly in the last line
of (155).

Now, choosing À = l so that

(1 1
10 (y - À)2dy = 12' (156)

which is the best choice, and setting

ß(l - 8) + UoF = 0 == ß(l - 8)Uo=- F ' (157)

leaves
A(O) = ß2(;; 8)2 (1 + ~ + (1 ~2~)F) = ß2;~;28)2 (12 + ~). (158)

Setting 8A(0)188 = 0 yields a minimum at

8 = ~ (-1 + VI + (96€1 F)) ~ € for €~ 1. (159)

One could, of course, use the optimal value of 8, but the simple choice 8 = € certainly gives
a valid saturation bound too, which is

£' -( A(O) = ß2 (1 12€)- 6F + F €.
Now the eddy energy is also bounded by the total energy of the system, namely

£' -( £total = ~~(1 + ~)(1 + €)2.

(160)

(161)

However it is clear that £total ~ A(O) for € c(c( 1, so the bound (160) is providig a non-trivial
constraint on the dynamics.

This gives a bound on the scaling of the saturation amplitude of the instabilty. But is
it any good? Weaky-nonlinear theory (Pedlosky 1970; War & Gauthier 1989) gives

ß2€
£fnax '" -F (162)

for € -(-( 1, which is the same scaling as (160); the numerical factors in (162) are llrr2 for the
non-resonant case, and 1/8 for the resonant case. This is to be compared with a coeffcient
of 1/6 for the stabilty-based bound. So the bound is, in fact, not too bad as an estimate of
the saturation amplitude.

An important generalization of these saturation bounds is to forced-dissipative systems.
If DPDt = -r(P - Pe) (163)
(potential vorticity relaxation), where Pe = P(t = 0), then these bounds on the eddy energy
remain valid (see Shepherd 1988b).
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5 Pseudomomentum

5.1 General construction

We have seen how one can construct the pseudoenergy, a second-order invariant, for distur-
bances to a steady basic state under time-invariant dynaIcs. Similarly, if the dynamcs
under consideration is invariant to translations in the x direction, we may construct a second-
order invaant for disturbances to x-invariant basic states.

Reca how we constructed the pseudoenergy from the Hamtonian, 1i, and the Casimis,
C: since the basic state U in that case is a steady solution of the dynaIcs,

J h1i1 = o.hu u=U (164)

It follows that for some Casimir C,

h1i
hu u=U

hC
hu u=U . (165)

The pseudoenergy is then

ArU; hu) = 1irU + hu)-1irU) + CrU + hu)- CrU), (166)

where C is defied by (165).
In the very same way, we may construct the pseudomomentum from the momentum

invariant, M. By definition of M (see §1.5), J(hM/hu) = -ux. Now, since the Hamltonian
is presumed to be invariant under translations in the x direction, it follows from Noether's
theorem that M is an integral of the motion. If the basic state U is also invariant with
respect to x translations, then

Jh-; I = -Ux = o.uu u=u
It follows that there exists a C such that

(167)

hM
hu u=u

Finaly we define the pseudomomentum by

hC
- hu u=U. (168)

ArU; hu) = MrU + hu) - MrU) + CrU + hu) - CrU), (169)

where C is defined by (168) so that (hA/hu)lu=u = o. In fact, it is clear from Noether's
theorem that we may generate a similar functional for any continuous symmetry of the
dynamics.

The pseudomomentum, like the pseudoenergy, is guaranteed to have the following nice
properties: (i) it is calculable to leadig order from linear theory; (ii) it may be sign-defiite
under certain conditions. If we find some zonal basic states for which the pseudomomentum
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is sign defute, then it is clear that we are in a pösition to generate more noruinear stabilty
theorems.

If the basic flow is both zonally symmetric and steady (as zonally symmetric flows often
are), we may combine the pseudoenergy and the pseudomomentum to generate stil more
quadatic invariants, according to

A = ('H + aM + C)¡uj - ('H + aM + C)¡Uj. (170)

Here we may choose a arbitrarily and, again, C is chosen so that (6A/6u)lu=u = o.

5.2 Example: Barotropic vorticity equation
In this section we wil develop an expression for the pseudomomentum of the barotropic
model in a ß-plane zonal chaneL. The flows we will consider are governed by the vorticity
equation

Pt + 8( ~, P) = 0

where ~ is the stream function, and P is the absolute vorticity
(171 )

P = V2~ + f + ßy. (172)

For defiiteness, we consider flows that are periodic in the x (zonal) direction, and bounded
by rigid wals in the y direction.

We take as the state variable the absolute vorticity, P, and the boundar circulations,
J. = f8Di V~. iî ds. Reca that in this formulation, the Hamltonian is given by

'H = f!Ð ~IV~12dxdY, (173)

The cosymplectic operator, J, acting on the basis (P, JLb JL2)' is given by

( -8(P,.) 0 0)
J= 0 0 0 .

o 0 0
(174)

The Casirnrs associated with J are functionals of the form
2

C = f ~ C(P) dxdy +LaiJLiD i=l (175)

for arbitrary functions C(.) and scalars ai' The momentum invarant M is found by solving

(8P )T (15M 15M 6M)T- 8x ,0,0 = J 6P' 6JLi' 6JL2

The solution (to within a Casimir) of (176) is given by

~ 8P (15M)
8x . 8 P, 6P . (176)

15M
6P =y == M= f!ÐyPdxdy. (177)
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This expression differs from the usual definition of momentum, which is ffD u dxdy. The
-reader may verify (cf. §1.5) that the difference between these two expressions can be wrtten
solely as a function of the boundary circulations p,i and P,2 - in other words, the differenæ
is a Casim.

If the basic state is given by ~ = \1, P = Q, then to fid the pseudomomentuIn we must
solve 6M 6CI- - == Y = -C'(Q). (178)6P P=Q = 6P P=Q

Note that this requires Q to be independent of x, i.e. Q = Q(y). Thus zonally symetric
states are seen to be constrained extrema of M, just as steady states are constrained extrema
of 1í. Solving (178) for C yields

C(Q) = - ¡Q Y(q) dij, (179)

where y(.) is the inverse of Q(y): that is, y = Y(Q(y)).
Note that sinæ the disturbanæ need not be dynamcally acæsslble, we may (as before)

extend the defiition of y(.), if required, to cover vaues of its arguent outside the range
of the basic state Q.

The pseudomomentum, A, is given by

A= ¡Iv y(P - Q) dxdy + C(P)- C(Q).

Setting P = Q + q, and substituting (179) for C, yields

A = ¡Iv iyq - hQ~ Y(ij) dij) dxdy.

(180)

(181)

Finaly, since y = Y(Q), we may wrte

A = ¡Iv Adxdy = ¡Iv i -lQ(Y(Q + ij) - Y(Q)) dij) dxdy (182)

(Kilworth & McIntyre 1985). Note the simiarity between the pseudomomentum (182)
and the expression in (98) for the APE. As a consequenæ, (182) has the same geometrical
interpretation as the APE (see the sketch in §3.4).

If dQjdy (and thus dY jdQ) is sign-definite, then so is A. In particular if dYjdQ =I 0
and

o ~ Ci ~ I :~ I ~ ~ ~ 00, (183)

then
1 2 I I 1 2
2"Ciq ~ A ~ 2"~q . (184)

This is the convexity condition for this problem. We then have normed stabilty under the
enstrophy norm. In particular, if we define our norm according to

IIql12 = ¡ Iv ~q2 dxdy, (185)
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then we have

Ilq(t)1I2 :: ~A(t) = ~A(O) :: Ci IIq(O) 112,Ci Ci Ci
which proves normed stabilty.

As with the previous stabilty criteria, this stabilty criterion applies to arbitrary large
disturbances. It is the finite-amplitude version of the Rayleigh-Kuo theorem (Shepherd
1988b). The same procedure applied to the quasi-geostrophic equations yields a fiite-
amplitude Charney-Stern theorem (Shepherd 1988a, 1989).

In §3.6 and §4.4, pseudoenergy-based finite-ampliude stabilty theorems were used to ob-
tain rigorous upper bounds on the nonlinear saturation of instabilties. The same procedure
is of course possible with the pseudomomentum. For a general discussion and applications
to parallel flows on the barotropic ß-plane, see Shepherd (1988b). Fuher applications are
provided in Shepherd (1988a, 1989, 1991).

(186)

5.3 Wave, mean-flow interaction

In this section we shed some light on why A is caed the pseudomomentum. Stil considering
the barotropic vorticity equation, if we take the x-average of the zonal momentum equation
we get Ôf = _ a (u2) _ a (uv) + jV _ -a (187)

at ax ay ax'
The first and last two terms on the right-hand side vansh due to the presumed periodicity
in x, together with the fact that v:: -'l:i so V = O. This leaves

Ôf a (u'v')
at-- ay' (188)

where the primes indicate departures from the x-average flow. Using the fact that the flow
is non-divergent, we can rewrite the previous equation as

Ôf = _v,(aU' _ av') + ~(~(U'2 _ V,2)).
at ay ax ax 2 (189)

The second term on the right-hand side vanishes under the zonal average, while the first
term represents the meridional flux of potential vorticity, q', hence

Ôf -
- = v'q'at . (190)

On the other hand, from the linearized potential vorticity equation

f/ + Uq~ +v'Qy = 0 (191)

we get
, 1 ( , ')v = - Qy qt + U q:i . (192)
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Substituting this expression for v' into (190) then leads to

âu_ 8 

(1q'2)8t - - at '2 Qy .
(193)

This is the well-known relation of Taylor (1915), describing how disturbance growth or decay
induces mean-flow chages. But note that the small-amplitude limit of the pseudomomentum
density (182) is

1 q'2A ~ -2" Qy . (194)
Combining this with the previous equation then yields the small-amplitude relation

âu 8fI
at at' (195)

which justifies the interpretation of A as a pseudomomentum. (The prefi "pseudo" has
led to some confusion. However, to discuss the "momentum" of waves has historicay been
a source of profound confusion! For background on this issue, as well as a defense of the
curent nomenclature, the reader is referred to the spirted aricle of McIntyre (1981).)

In the continuously stratifed quasi-geostrophic case, (190) generalizes to (see e.g. Ped-

losky 1987, §6.14) âu 82_
.c( at) = 8y2 (1Iq'),

where .c is the linear ellptic operator

(196)

£,_ 82 +~~Ps~
- 8y2 ps 8z S 8z' (197)

The pseudomomentum conservation relation may be wrtten in local form, including non-
tonservative effects, as

8A-+V.F=Dat '
where D represents the non-conservative effects and -F is the so-called Eliassen-Pal flux

(Andrews & McIntyre 1976), satisfyng

(198)

v . F = -v' q'. . (199)

(The minus sign in the definition of the E-P flux is for historical reasons: the introduction of
the E-P flux predated its understanding in terms of pseudo momentum.) From these relations
we get the following equation for the mean-flow tendency:

âu 82 - 82 - 82 8A -.c ( at) = 8y2 (v' q') = - 8y2 (V . F) = 8y2 (-i - D). (200)

Relation (200) generalizes (195) in two distinct ways: first, by including non-conservative
effects; and second, by extending the relation to quasi-geostrophic flow. Integrating (200) in
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time over some fiite time interval then gives the following expression for the net change in
the zonal flow, ßu:

ßu = £-It:;2 (SA - ! Ddt)). (201)

That is, to have a change in u, we need either transience in the wave activity, ßA =f 0,

or wave-activity dissipation, D f= 0; this is the "non-acceleration theorem" (Andrews &
McIntyre 1976). The insight provided by this theoretical framework has recently led to
profound advances in our understanding of some classical questions in large-scae atmospheric
dynamics, including the maintenance of the westerlies (see the discussion in Shepherd 1992b).

The beauty of the Hamiltonian framework is that it provides insight into which aspects of
a particular derivation may be generalizable to other systems. For example, the wave, mean-
flow interaction theory exemplifed by the relation (200) is clearly generalizable through the
unfyng concept of pseudomomentum (e.g. Scinocca & Shepherd 1992; Kushner & Shepherd
1993).

5.4 Wave action

There is a classical literature in fluid mechanics that is relevant to wave propagation in
inhomogeneous, moving media. For WKB conditions - namely, a nearly monochromatic
wave packet propagating in a slowly varing background state - there is a conservation
law for the so-caed "wave action" (Whitham 1965; Bretherton & Garett 1968). The wave
action is given by E' /w, where E' is the wave energy (as measured in the local frame of
reference, moving with the mean flow) and w is the intrinsic frequency of the waves (Le. the
frequency in the loca frame of reference). In the case of the barotropic vorticity equation
with a zonal basic state, for example,

E' = ~IV'Ø'12
2

and A kQyW = - k2 + l2 ' (202)

where k and L are the x and y wavenumbers, respectively, Qy is the basic-state potential-
vorticity gradient, and the overbar now represents an average over the phase of the waves.
Thus the wave action for -Rossby waves is given by

,.,"

E' 1 (k2 + l2)IV'Ø,12

w 2k Qy
1 q,2

- 2k Qy .

¡,
,ft

.i
(203)

Referring to (194), we conclude that the wave action is the pseudomomentum divided by
the zonal wavenumber,

E' Aw k'
Of course, wave action is a local concept which may be defined even when there is no global
symmetry in the problem (provided the WKB conditions are satisfied). However, when the
basic state has a zonal symmetry, the pseudomomentum may be defied and is related to the
wave action in the above fashion; the factor of k is then irrelevant since it is constant. Under
such conditions, the pseudomomentum may be regarded as a generalization of wave action
insofar as it is not restricted to WKB (slowly varying) conditions, neither is it restricted to

(204)
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small amplitude. This connection has aleady been made by Andrews & McIntyre (1978)
withi the context of Generalized Lagrangian Mean theory; the present treatment ilustrates
how it holds for the Eulerian formulation of fluid dynamcs.

5.5 Instabilities
Analysis of normal-mode instabilties is often faciltated by the use of quadratic invarants
such as pseudomomentum and pseudoenergy. This is because for a normal mode,

A = Aoe2ut (205)

where Ao = A(t = 0) and u is the real par of the growth rate. However, A is conserved in
time, which implies that u A = O. Therefore, we conclude that growig or decayig normal
modes (with u =I 0) must have A = O. (In fact, many of the well-known derivations of linear
stabilty criteria involve the implicit use of this relation uA = 0: an example is Pedosky
(1987, Eq.(7.4.22))).

The constrait A = 0 on normal-mode instabilties means that such instabilties consist
of regions of positive and negative A. This is a generalzation of the notion of positive and
negative energy modes discussed in Morrison's lectures. It is clear from the Hamiltonian
perspective that one may speak of positive and negative pseudoenergy, or positive and nega-
tive pseudomomentum, or even some combination of the two, dependig on which invariant
quantity is most appropriate for the problem at hand.

This concept is most useful when the wave-activity invariant being considered is sign-
defiite in certain parts of the flow, and can be associated (in an appropriate limting sense)
with certain wave modes. Typicaly in the short-wave limit these modes decouple and are
neutral.

As an example, consider baroclinic instabilty in the continuously stratified quasi-geostro-
phic model, with Zo ~ z ~ Zi. In this case the small-amplitude expansion of the pseudomo-
mentum gives (Shepherd 1989)

A = Ai + A2 + A3 (206)
where

ii'r ps q2
Ai = - JD 2 dQldy dxdydz,

III ~ III ~A2 = 2 dAiÎdY dxdy Z=Zl ' A3 = - 2 dl\/dY dxdy z=zo . (208)

Here Q and q are the basic-state and disturbanæ potential vorticity fields, whie Ai =
'WzL=Zi and Ài = ''lzlz=zi where \l and 'l are the basic-state and disturbance stream
function fields. All known (inviscid) quasi-geostrophic baroclinic instabiltiés may be under-
stood within this framework. In the case of the Eady model, we have

(207)

dQ=O 0 ddAi 0
dy , q = , an dy.(. (209)
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Therefore, in this model instabilty is possible with Ai = 0, A2 -( 0, and Ag ). O. In the case
of the Charey model there is no upper lid so the contribution to A2 vanshes, whie

dQ dAody ). 0 and dy -( O. (210)
Thus in this case Ai -( 0, A2 = 0, and Ag ). O. For internal baroclinÌc instabilty (like in the
Phillps model), A2 = 0 and Ag = 0 so we must have Ai = 0, but characteristicallydQ dQ

dy ). 0 for z). Zc and dy -( 0 for z -( Zc (211)
for some zc, so Ai consists of a negative-A mode above a positive-A mode.

A very important feature of these wave-activity invarants is that their fite-amplitude

forms are meanngf even' for discontinuous basic-state profies. Indeed, the understanding
of instabilties in terms of interacting modes is clearest when the modes are spatially localized
on material interfaces. For example, consider the barotropic system with a basic state

Q(y) = f Q2, y). 0 (212)
1 Q1, Y -( 0

where Q1 -( Q2. We can study the stabilty of this profie by looking at the regions where
A =l O. In this cae the pseudomomentum is given by

A = -gq (Y(Q + q) - Y(Q)) dq. (213)
Note that A = 0 except in the hatched regions (see figue below).

Gi.1'= Q1.~Y='l

L ~ .ßy~oy ~:x 'P" Q, YL
Q G,

It turns out (see Shepherd -1988b, Appendix A) that

A= J!ÐAdxdY=-~(Q2-Q1)fr¡2dx" (214)
where r¡ is the meridional displacement of the material contour where the vorticity jump
occurs. Evidently in this case A -( 0, and the basic state (212) is stable. The above formula
can be generalized for N contours (denoted by Ci) as follows:

A = I' f A dxdy = --21 t 1, r¡2 dx. (215)JD i=l lc.
So we see that the pseudomomentum resides in each contour, and has a sign opposite to that
of the vorticity jump. This is in contrast to the pseudoenergy, which is not so localized.
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