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1 Generalized Hamiltonian dynamics

1.1 Introduction

Virtually every model used in Geophysical Fluid Dynamics (GFD) is, in its conservative
form, Hamiltonian. This is not too surprising since the fundamental equations from which
every model is derived are themselves Hamiltonian: namely the three-dimensional Euler
equations for compressible, stratified flow (Morrison & Greene 1980; Morrison 1982).

The Hamiltonian formulation of dynamics is relevant to the description of many dif-
ferent phenomena. In the field of theoretical physics, it provides a general foundation for
quantum mechanics, quantum field theory, statistical mechanics, relativity, optics and celes-
tial mechanics. Hamiltonian structure constitutes a unifying framework, wherein symmetry
properties are readily apparent which may be connected to conservation laws by Noether’s
theorem. One therefore expects some of the same advantages to hold in GFD.

In these lectures we will consider particularly the application of Hamiltonian structure
to problems involving disturbances to basic states. As we shall see, such diverse topics as
available potential energy, wave action, and most of the well-known hydrodynamical stability
theorems (static stability, symmetric stability, centrifugal stability, and the Rayleigh-Kuo
and Charney-Stern theorems) may all be understood — and in some cases significantly
generalized — within the Hamiltonian framework.

It is sometimes objected that Hamiltonian structure is irrelevant to GFD because real
fluids are viscous. Against this, we note simply that many phenomena in GFD are essentially
conservative (inviscid, adiabatic) since they occur at high Reynolds numbers, Re > 1. For
example, in the free atmosphere Re ~ 10'. Thus many GFD phenomena (instabilities,
wave propagation, and wave, mean-flow interaction) are traditionally studied within the
framework of a conservative model. Even if non-conservative effects arise, these may often
be understood as localized effects on otherwise conserved quantities: examples include fronts,
shocks, and gravity-wave drag (cf. Benjamin & Bowman 1987).

Moreover, many of the most interesting phenomena in GFD arise from the nonlinear
(usually advective) terms in the relevant equations. Examples include wave, mean-flow in-
teraction, energy budgets and conversions, and spectral transfers in turbulent flow. These
nonlinear terms are conservative, and are therefore part of the Hamiltonian structure of the
problem. It follows that the nonlinear interactions are constrained by preservation of invari-
ant quantities (e.g. energy, enstrophy) which are connected to the underlying Hamiltonian
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structure of the model: one cannot deduce the correct spectral transfers in a problem unless
one imposes the correct invariants on the nonlinear dynamics.

Hamiltonian structure also provides a natural framework within which to derive approxi-
mate models. It is well known that in making approximations one should attempt to maintain
fundamental conserved quantities. A good example of this is provided by the hydrostatic
primitive equations on the sphere (Lorenz 1967), where energy and angular momentum con-
servation are lost under the hydrostatic approximation, and certain manipulations must be
made to the equations in order to restore them. Rather than such trial-and-error methods,
it is preferable to ensure maintenance of invariance properties by making the approximations
within a Hamiltonian framework (Salmon 1983, 1985, 1988a). '

The approach followed in these lectures is to use the Hamiltonian structure of GFD in
a very practical way. In particular, there is no need to use the Poisson bracket itself, or
even to know it, if one knows the invariants. One needs merely to know that the bracket is
there! All the manipulations required here can be expressed in terms of standard variational
calculus: one has merely to vary all dependent variables, integrate by parts, and check the
boundary conditions. Finally, everything derived from Hamiltonian theory may always be
verified afterwards by direct use of the equations of motion.

1.2 Dynamics

We consider the generalized Hamiltonian dynamical system
Ou oH
—=J—= 1
. ot u’ (1)
where u(zx,t) are the dynamical fields, H is the Hamiltonian, and J is a skew-symmetric op-
erator (called the cosymplectic form) having the required algebraic properties (see Morrison’s
lectures). The equivalent formulation in terms of Poisson brackets is

2~ 17, @)

where F[u] is an admissible functional. The Poisson bracket is defined by

.61 = (o, 122 ®

(the angle brackets denoting an appropriate inner product), and the bracket satisfies prop-
erties analogous to those of J. Typically

8F 6g
<6'u. Su /5 Zéuz ”6 “)

i.e. the inner product is the spatial integral of the dot product of the two vectors. Further
discussion of the forms (1) and (2) as applied to fluid dynamics may be found in Morrison
(1982), Benjamin (1984), Salmon (1988b), and Shepherd (1990, 1992a).

Let us verify the equivalence of the above two formulations, (1) and (2). Assuming first
that (1) holds, we note from (3) that

6.7-' 6H OF 0O dF
5a) G 7

[F, H] = < u S et = @ (5)
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(the last step invoking the chain rule for functionals), and hence (2) is verified. Now assuming
that (2) holds, let us take

Flu) = wi(z,) = / 8(x — o) wi(x) dee 6)

for some 7 and some &, where §(x — x,) is the Dirac delta-function; thus

0F

6F = /6(:1: — @,)6u;(x) de, u,

= §(x — @) 6i;, (7
where §;; is the Kronecker delta. Then using (2), (6) and (7), we have

Psw) =2 = (2 5Ty (5(a - ma)é, (7 )= @) ®

Thus (1) is verified, component by component.

dt

1.3 Steady states and conditional extrema
Let u = U be a steady solution of the dynamics (1). If J is invertible, then

J‘;__H _U_, ©)
u u=U at
leads to .y

Falyp " 0. (10)

Hence steady solutions are extrema of H.

But suppose now that the dynamics of the system is non-canonical, in the sense that J
is non-invertible (cf. Morrison’s lectures). Then (9) does not imply (10) However, Casimirs
C may be defined such that

b
J5—C =0 (equivalently, [C,F] = 0V F), (11)
and the set of all vectors 6C/6u spans the kernel of J. At w = U, therefore, 6H/6u is
locally parallel to 6C/éu for some C (a different C for each choice of U); equivalently, there
generically exists a Casimir C such that

6_7-[
bu

__¢
u=U buly U

One must be careful here with classes of admissible variations; this point will come up again
when we consider nonlinear stability. Note that Casimirs are always invariants of the motion,

since dC e 6C J6’H> sC 6H> N
Su u’ bu

(12)

(13)
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From (12), we have that
6
s+ c>|u=U =0. (14)

This statement has two interpretations: (i) U is an extremum of the invariant H+C; and (ii)
U is a conditional extremum of H, subject to the constraint C = const. (as with Lagrange
multipliers). An example of an elliptic fixed point, representing a maximum or minimum,
is sketched below; the curves are lines of constant H, and the constraint surface is the
“symplectic leaf” C = const. :

C = const.

1.4 Example: barotropic vorticity equation

This model is discussed in Morrison’s lectures, but it is useful to consider it in the present
context. The discussion will also illustrate some of the complications that are introduced by
boundaries. The governing equation is the (2-D) vorticity equation

Y reww=0, (15)

where 1) is the stream function, the velocity is given by v = 2 x V1), w = V24 is the vorticity,
and 9(a,b) = azby — a,b, is the two-dimensional Jacobian operator. With this choice of w,
the system is identical to the 2-D Euler equations. We consider a closed, multiply-connected
domain D with N connected boundaries 8D; (i = 1,..., N) on which v-A = 0 (or 8¢/8s = 0,
where s is arclength along dD;), where 1 is the unit outward normal vector.

This system is Hamiltonian with

_ ([ Ligup |
H = / /D IV dody. (16)
The first variation of H is given by
§H = / /D Vi - Ve dzdy
=/ /D [V - 06Vy) — 95V dudy
- ;¢6£Divw-nds~//1)¢6wda:dy, (17)
where the last step follows from the fact that % is constant on the boundaries. This means

that one cannot write 6H = ((6H/éw),éw) alone. Stated otherwise, w is not enough to
determine the dynamics; we need boundary terms as well, as follows.
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Defining v; = §,p, V¢ - ids to be the circulation on each connected piece dD; of 8D,
recall that dv;/dt = 0. (This is the usual boundary condition on.the tangential velocity;
it follows from consideration of the momentum equations underlying (15).) The boundary
circulations can therefore be considered dynamical variables, and one may rewrite §H in
terms of §v; in addition to éw: from (17),

H=3 b - / /D Wéwdzdy | (18)
which implies 57 57
=" i ¢I8D‘_ : (19)

Note that in the first equation of (19), one cannot think in terms of partial derivatives:
in particular, 8|v|?/8w makes no sense. Instead, it is clear that variational derivatives are
required.

Relative to w alone, the ;’s extend the phase space in the following way: there are
now N + 1 dynamical variables u = (w,71,...,7n)T, and the cosymplectic form J is an
(N +1) x (N + 1) matrix operator:

-O0w,’) 0 ... 0
0 0 0

J = . N R ' (20)
0 P |

Substituting (19) and (20) into (1) yields, as expected, the equations of motion

(%t‘i, %,...,‘ZV—:’)T — g—'t‘ = JZ—Z - (—-6(w,‘—§/}),0, s 0) (21)

Having seen that arbitrary disturbances can be incorporated into the Hamiltonian de-
scription, let us now, for simplicity, restrict our attention to circulation-preserving distur-
bances: namely those with év; = 0 for all i. (If this condition holds at one time, it will
hold at all subsequent times.) For this special case, w is the sole dynamical variable and
J = —0(w, ). Let us find the Casimirs. Solving (11) in this case, we obtain

(w, gg) —0; (22)

in other words, lines of constant w and constant 6C /6w coincide. Locally, at least, this means
that 6C/éw = f(w) for some function f. Such a function may not be defined over the entire
domain D, however. A sub-class of these Casimirs which is useful for applications (see the
later sections on stability) consists of those for which the functional relation is global: these
may be written as '

Clw] = / /D C(w) dzdy (23)

for some function C. Since Casimirs are always invariants of the motion, this demonstrates
that

% /D C(w) dzdy = 0 (24)
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for any function C(w). The set of conservation laws described by (24) reflects the fact
that w is a Lagrangian or material invariant of the dynamics (15), given that the flow is
non-divergent. Since the dynamical evolution takes place on the symplectic leaf C =const.,
where the constraint refers to all Casimirs simultaneously, we see that the Casimirs provide a
severe restriction on dynamically possible behaviour. This is intuitively obvious for piecewise-
constant vorticity profiles. The calculation also demonstrates that there is nothing esoteric
about Casimirs: they have real physical meaning. ‘

We should be able to show that steady solutions of (15) are conditional extrema of H,
subject to the constraint that the variations preserve C. First consider the extremal condition
(12), which takes the form 3 = C’(w) in this case for C given by (23). If, therefore, (12)
holds, it follows that

wy = —0(P,w) = —0(C'(w),w) = 0, (25)

and the flow is steady. One may also build in the constraint imposed by conservation of
C directly on the variations. To do this, set w = 8(p,w) for some arbitrary ¢ which
is constant on the boundaries. Such variations éw are clearly just non-divergent (area-
preserving) rearrangements of the vorticity field w, for which

&C ! _ _
6C = //D D bwdxdy = //DC’ (w)0(yp,w) drdy = //D (9, C(w)) dzdy = 0. (26)
For steady states with 8(v,w) = 0, the variation of H is then

§H = / /D 2—7:6wdxdy=— / /D $8(p,w) dzdy = / /D 00, w)dzdy =0  (27)

(using the fact that both ¢ and ¢ are constant on the boundary); hence steady solutions
of (15) are seen to be unconditional extrema of H for vorticity-preserving variations, as
expected on general grounds.

The variations 6w = O(yp,w) considered above may be written in the form éw = Jo,
which suggests the general form éu = Jy for a vector ¢. Evidently such variations are
guaranteed to be Casimir-preserving, since

6C 6C 6C
§C = <%,6u> = <E’ Jo) = —<J%,<,o> = Q. (28)
The reader is referred to Morrison’s notes for a more detailed description of such variations,
which he refers to as being “dynamically accessible”.

1.5 Symmetries and conservation laws

As in textbook classical mechanics (e.g. Goldstein 1980), for any functional F we can define
a one-parameter family of infinitesimal variations §u induced by F by

5}'1_1. =eJ t;—-:-, ‘ (29)
where ¢ is the infinitesimal parameter. The change in another functional G induced by this
variation is

0G

ArG =Gu + bru] - Glu| = <E’6Fu> + O((6ru)?) = €lg, F] + O(€), (30)
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where the second step follows from the deﬁnitioﬁ of the functional derivative, and the third
step from the definition of the bracket together with (29). This proves

Noether’s Theorem: The Hamiltonian is invariant under infinitesimal variations generated
by a functional F, in the sense that AzH = 0, if and only if F is a constant of the motion.

Therefore, given a symmetry of the Hamiltonian (a variation éu under which the Hamilto-
nian is invariant), one can attempt to solve (29) to find the corresponding invariant (modulo
a Casimir). Equally, given a known invariant F, one can use (29) to determine the corre-
sponding symmetry.

Exercise: Cyclic coordinates in a finite-dimensional canonical system. If H is invariant
under translations in ¢; (i.e. 9H/8¢; = 0 for some i), use (29) to show that the corresponding
p;i is a constant of the motion.

As is well known, the KAV equation possesses more than one (non-trivially related)
Hamiltonian representation. Consider two representations with cosymplectic forms J; and
Jo. Suppose that 6u; is a symmetry of the system; using J; with (29) then defines an
invariant I;. But knowing I, (29) may now be used with J; to find a new symmetry, 6u,.
Then substituting éus back into (29) with J; produces a new invariant I, and so on. This
procedure will continue indefinitely as long as we keep generating new invariants; in the case
of the KdV equation this turns out to be true, and leads to exact integrability. See Olver
(1986) for a more thorough, and highly readable, discussion of this topic.

Returning to the relation (29), we see that Casimirs correspond to inwvisible symmetries
since sC

beu= ez =0: (31)

Casimirs induce no change whatsoever in the dynamical variables.

Let us now consider some examples of symmetries and conservation laws. First suppose
that the Hamiltonian # is invariant under translation in time. We can set §ru = —e(Ou/6t)
as the variation in w induced by a shift in time, ¢ = 6¢. (The minus sign is indeed correct:
think about it!) To find the corresponding invariant F we must therefore solve —(0u/0t) =
J(6F /6u), which implies F = —H (to within a Casimir). This shows that H is the invariant
corresponding to time-translation invariance. (This statement is not trivial. In particular,
recall the relation dH/dt = 8H/0t in classical mechanics; the former corresponds to a
conservation law, the latter to a symmetry-invariance.)

As another example, suppose that the Hamiltonian H is invariant under translation in
space: xj, say, for some j. We can set dru = —e(0u/0z;), and to find the corresponding
invariant we must solve —(0u/0z;) = J(6F /6u). In the case of the barotropic vorticity
equation, for example, with j = 1 this becomes

Oow ) (w’ %Z — 6F

oz Sw

= F = //Dywda:dy://Dy(%—g—:)dxdy://;)udxdy (32)

(to within a Casimir). Therefore the invariant corresponding to z-translation invariance of
the dynamics is seen to be the zonal momentum, as expected.
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For j = 2, similar considerations lead to

ow 6.7-' 6.7-'
— = a( w,— = = —I
oy

—-//a:wda:dy [[ = "’—Z-— )dwdy= [[ vizdy (33

(also to within a Casimir). Therefore the invariant corresponding to y-translation invariance
of the dynamics is seen to be the meridional momentum.

By Noether’s theorem, the same construction is guaranteed to work for any continuous
symmetry. Let us show it for a rotation. We take the variation to be ér = 0, 60 = ¢, where
r and @ are polar coordinates defined by z = rcosf and y = rsinf. The corresponding
variations in z and y are given by

= F

0z = —rsin0 60 = —ye, 6y = rcos § 60 = ze. _ (34)
It follows that the variation in the dynamical variable w is

Ow ow Ow Oow
bw = —6—6:1: B — by = (ya - ma—y)e

Then to determine the invariant corresponding to this symmetry we must solve (29), which
takes the form

ow  Ow oF 6F 1,, 72

(35)

T— — — = —e —_— = —— 2 = —_——
8y Yor Ow, 6w) — dw 2(:6 +9) 2
2
= F = —//D%wdxdyzf/Dﬁ-(rxv)d:cdy (36)

(to within a Casimir). The last computation is obtained after integrating by parts. As
expected, we obtain the angular momentum.

1.6 Steadily-translating solutions

Suppose there exists a solution to the system (1) translatmg steadlly in z at a speed ¢, i.e.
u(z,y,2,t) = U(zx — ct,y, z). Then clearly

ou oUu

The fact that the solution is translating in 2 implies that there is a symmetry in z; if M is
the invariant corresponding to this symmetry, then by (29)

_ou J6M

"o Ty (38)
On the other hand, we have
ou _ ;M| (39)
ot ou ulU
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It follows from (37), (38), and (39) that

pLL = M 20— M) =0
buly 7 bu |y_U bu u=
d(H-ecM+C) _0 (40)
du u=U

for some Casimir C. Thus U is seen to be a conditional (or constrained) extremum of the
invariant % — cM. We note that (40) provides a variational principle for travelling-wave
solutions (cf. Benjamin 1984).

2 Hamiltonian structure of quasi-geostrophic flow

In order to illustrate the general theory of the previous section, we describe in some detail
the Hamiltonian structure of what is probably the most widely-used model in theoretical
geophysical fluid dynamics: quasi-geostrophic flow. Two specific such models are considered:
the two-layer model in a periodic zonal G-plane channel, and continuously stratified flow over
topography.

2.1 The two-layer model
The governing equations may be written (e.g. Pedlosky 1987) as

Og; .
S tveVa=0 [i=12, (41)
where the velocity in each layer is given by v; = Z x V1);, and the potential vorticity by
& =V%+ (-1F@—)+ f+ By [i=1,2]. (42)

The parameter F; is a measure of the stratification; if the layer depths are denoted D;, then
we have the geometric constraint D, F; = D,F;. All fields are assumed to be periodic in z.
The boundary conditions at the channel walls y = 0, 1 are the usual ones of no normal flow,

O .
— = = M 4
e 0 aty=0,1 [{=1,2]; (43)
and conservation of circulation,
d a¢z d 0 d a’l/i, d 1 .
dt ay dx b0 dt’)ll 07 dt ay vt dt’Yz 0 [Z ) ] ( )

The dynamical variables are q;, g2, 42, 7}, 73, and 7. We can write the Hamiltonian as

H= [[ S{DAIVP + DoIVHl? + DyFi (@ — )7} dedy, (45)
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in which case
: 6H = /L{D1V¢1 . V(S?,bl + D2V'l/)2 . V(S’(/)z + DlF]_(’l,b] bt ¢2)6(¢1 - ’(,bz)} d.'I:dy
= /L{Dlv . (¢1V6¢1) - D1¢16V2¢1 + DoV - (4, Vi) — D2¢2(5V2'¢/)2

+D1 Fy (31 — o) — DaFthob(thy — tb2) } dady. (46)
To obtain the last line, the relation Dy Fy = Dy F; has been used. This gives

6H = Dy _ 87 +Duh| _ 810+ Datho| _ 674 + Data| _ 48

- / /D {D1¢1 8[V2ehy — Fi(1 — 2)] + Dathe 6]V + Fa(3hy — ¢2)]} dzdy, (47)

from which we may infer

oH oH .
T =Dk wd D, =12 @

The functional derivatives in this system are evidently analogous to those of the barotropic
system, as described in Section 1.4. Taking the dynamical variable u to be

u= (QIaQ%'Y?)'Ylla'Yg"hl)T’ (49)

the cosymplectic form J is clearly

((—50(q,") 0 000 0)
0 —5;0(q2,)) 0 0 0 0
S 0 0 0000 (50)
0 0 0000
0 0 0000
\ 0 0 000 0)
The Casimirs are of the form
=1
Clay, 02,787,989 = [ [ {Crlar) + Calgn)} dady + 3 €I, (51)

i=1,2

where the Cji’s are arbitrary functions of one argument, and the C!’s are arbitrary scalars.
It is easy to see that
5 _
bg;
whence the condition (11) is verified. To find the steady states, we must solve the following
extremal equations: for g;, '
oH  &C

0q; —5_%'

6C -
Ga),  55=0h (52)

- Dy = Ci(qs), (53)
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which implies 1; = 9;(g;); and for 47,
SH &
&y o6

which implies that 9; is constant along the boundaries.
To find the zonal momentum invariant M, we must solve the equations

on_ 1, M 01, M
6:c—D1 (ql’ 6q1)’. 6$—D2 (q2, 6(]2)

= D],

=j = _Ciia (54)

(55)
simultaneously. Note that there is no continuous symmetry for 7. The solution (to within
a Casimir) of (55) is evidently

oM
oq;

=Dy = M= / /D {D1yar + Dyygo} ddy, (56)

again analogous to the barotropic case. Using the definition of ¢;,

M = [[o{p (G "’”’1)+D(”2+"’¢2)+<Dl+pz)(f+ﬂy)}dxdy

Oy? 02 Oy?
3¢1 61,02 3¢1 O
[y / (D1 ay + D2 ] / /D + Dz By }d:t:dy + const.
= Dyl + Doy3 + / /D (Dyuy + Daug) dxdy + const. (57)

The first two terms of the above expression are Casimirs, while the spatial integral represents
the zonal momentum.

2.2 Continuously stratified flow over topography

In the above sub-section we have shown how to handle the circulation terms on the side walls,
so to simplify the following manipulations we now restrict our attention to the case where
the circulation is held fixed when performing the variations. We again consider a periodic
zonal channel, bounded top and bottom by rigid lids, with 0 < z < 1. The dynamics is given
by (e.g. Pedlosky 1987)

20 =% rowa) =0 P<z<1], (58)
S+ fSR) =0 =0, TW)=0 [=1) 59)

where the potential vorticity ¢ is defined by

0= Yoo Yt ~(Bey.),+ 1 + . (60)

The density p,(2) and stratification function S(z) = N?/f2? (where N(z) is the buoyancy
frequency) are both prescribed, h(z,y) is the topography at the lower surface, and ¥, is
proportional to the temperature.
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The dynamical boundary conditions (59) on the lids z = 0, 1 are necessary, and represent
true degrees of freedom. This can be seen by varying H:

n=[[[ %{|V¢|2+%d}f}dzdydz  (61)
implies
§H = / / fD po{ V- V5 + %@/}z&pz}dxdydz
= [ {-owsv g (Goown) ~ v (0} o
- 3] [ s w

(noting that the variations in the side-wall circulations have been taken to vanish). In
particular, we cannot write 6H = ((6H/6q), 8q) unless we treat the terms in (62) involving
the spatial integrals over the lids.

One option is to make the lids isentropic: 9, = constant. Then in a completely analogous
fashion to the way in which one may eliminate the circulation terms, one may restrict
attention to variations with 81, = 0 on 2z = 0,1, in which case the integrals over the lids in
(62) disappear. Note that this is dynamically self-consistent: from the governing equations,
it follows that isentropic lids remain isentropic under the dynamics. Pursuing this option
leaves us with a dynamical structure very similar to that of the barotropic system, but this
is very restrictive indeed. For example, it eliminates the meridional temperature gradient at
the lower surface which is so crucial in driving the atmospheric circulation.

A better option is to incorporate the terms in question into §H. This can be done by in-
troducing additional dynamical variables, just as one may introduce the side-wall circulations
as dynamical variables (see previous sub-section). It is natural to define

=L@ is0|_ M=%

& (63)

z=1’
in which case (59) take the form

D _, Dk

=" = (64)

Then (62) can be written

§H = / / Yohdady - / / Yodadody| - / / /D s bq dzdydz; (65)

the entire variation of H is now captured, with the functional derivatives

=

oH oH oH
E = —pstp, o —¢ 20’ N (4 =1 (66)
Taking the dynamical variable to be u = (g, Ao, \1)7, the cosymplectic form is evidently
—7,1:6(% ) 0 0
J= 0 ~d(N,”) O : (67)
0 0 d(A1,-)
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The Casimirs are clearly of the form

Clg, Ao, M) = / / /D psC(g) drdydz + f f Co(Mo) dzdy

for arbitrary functions C, Cp, and C;, with

oc 6C 6C

—_— / — = — =
6q psC (q)a 6A0 CO(/\O): 6/\1 C'l (Al))

which when combined with (67) may be seen to satisfy (11).
The steady-state solutions satisfy

ot / / Ci(Ar) dady

z=1

o __sc
bg  6q’
which implies p,% = psC’(q) and thus 7 = 1(q); and
&H €
vy [i=0,1],

which implies (—1)*) = C](\;) and thus 3 = 1(\;) on z = i.
To find the zonal momentum invariant M, we must solve the equations

O0q 1 a( 6M)’ OXo 28()\0,%) o\ _ —3( 6M)

w2\ B vy A

simultaneously; the solution (to within a Casimir) is

M= ///D psyq dzdydz + //ondxdy o //y/\l dzdy

Exercise: Show that (to within a Casimir) M = [ff, p,u dzdydz.

z=1

3 Pseudoenergy and available potential energy

3.1 Disturbances to basic states

(68)

(69)

(70)

(71)

(72)

(73)

Very often one is interested in flows that are close to some given basic state. Examples
include the energetics of waves, stability and instability of basic flows, wave propagation in
inhomogeneous media, and wave, mean-flow interaction. We would therefore like a Hamilto-
nian description of the disturbance problem. Ideally it should be exact, i.e. nonlinear. Two
questions immediately arise: What is the correct Hamiltonian? What is the energy? The
answer to these questions involves a new quantity, often referred to as the pseudoenergy. One
of the simplest contexts in which the relevant issues arise is the familiar and classical one of
available potential energy (APE), so we shall discuss it at some length. Further details may

be found in Shepherd (1993a).



3.2 APE of internal gravity waves

Consider the energy of internal gravity waves in an incompressible, Boussinesq fluid, governed
by the equations .
N \% u
vt+('v-V)v+fzxv:——p—ng, (74)
Poo  Poo

pt+v-Vp=0, V-v=0, (75)

where poo is a constant reference density. The notation is standard. The resting basic state
on which the waves exist is assumed to have a horizontally uniform density p = py(2), with
stable stratification: g(dpo/dz) < 0. The kinetic and the potential energy per unit volume
are given by :

1
Ex = Spolvl’,  Ep=pgz. (76)

Since it integrates to a constant, we might as well remove ppgz from the potential energy.
This leaves

Ep=(p— po)gz. (77

Now, for small-amplitude waves, Ex = O(a?) but Ep = O(a), where a < 1 is the wave
amplitude. This is odd, for a number of reasons. First, Ex < Ep, which is counter-intuitive
(one expects the two forms of energy to be of the same order); second, Ep is not sign-definite;
and third, the disturbance energy cannot be calculated to leading order from linear theory.
To see this, consider a solution involving a perturbation expansion in some small parameter
€:

p—po=€p1+€po+..., v=evi+evat.... (78)

The subscript 1 variables would be determined from linear theory, the subscript 2 variables
from second-order nonlinear theory, and so on. Expanding the energies in terms of ¢ yields

1 |
Ex = spolvsf’e® + O(),  Ep = prgze + pagze® + O(E?). (79)

If we are considering sinusoidal waves then p7 = 0 but 73 # 0 in general, where the overbar
denotes an average over phase. Therefore to determine Ep at leading order, pz must be
determined; but this requires a solution of the nonlinear problem.

All these difficulties arise from the fact that the expression for Ep is formally O(a).
Fortunately, however, there is a remedy. Traditionally (e.g. Holliday & McIntyre 1981)
it is presented as a trick. For incompressible fluids, (75) implies that [ff, F(p)dxdydz is
conserved for any function F(-). For a statically stable basic state po(2), the inverse function
z = Z(po(2)) is well defined. We may then take

Fo)=~ [ 92(5)dp, (80)

and note that _ .
- J[[{Ex + Be + F(p) - Flpo)} dudydz (81)
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is conserved. That is, we combine energy conservation with mass conservation, to obtain a
new conserved quantity with density per unit volume given by

A = Ex+Ep+F(p)— Flpo)

1 e
= §pooIvI2+(p—po)9z— /po 9Z(p) dp

1 P—po o
= Epoolvlz+(,«J—po)gz—/0 9Z(po + p) dp

1 9 p=po . . ,
= ghoolvl* - /0 91Z(po + p) — Z(po)] dp. (82)
The small-amplitude approximation to A (appropriate for waves, say) is
1 1 1 1 g
AN— 2__ZI _ 2=_ 2_ - _ 2.
5P|Vl = 592 (po)(p = po)” = Spoolvl® — 3 D) (0 — po) (83)

The second term in (83) is the familiar expression for the APE of internal gravity waves (see
e.g. Gill 1982, §6.7 or Lighthill 1978, §4.1). The conserved quantity A has the properties
we would expect from a disturbance energy: A = O(a?); A > 0 if the background is stably
stratified (this is also true at finite amplitude); and A is calculable to leading order from the
linearized solution. In textbooks, the small-amplitude form is derived by direct manipulation
of the linearized equations — thereby obscuring the fact that mass conservation has been
used.

Other cases where a similar situation arises include the energy of acoustic waves (Lighthill
1978, §1.3) and the APE of a hydrostatic compressible ideal gas (Lorenz 1955).

3.3 Pseudoenergy

When one considers the wide variety of situations in which the concept of APE arises,
certain questions naturally arise. In particular: Why do other conservation laws (like mass
conservation) need to be brought in? Which conservation laws are needed? Is there a
systematic way to construct the APE? Does the concept extend to arbitrary fluid systems?
And does it extend to non-resting basic states?

It turns out that these questions can all be answered by considering things within the
Hamiltonian framework. Since fluid systems are generally non-canonical, perturbing a steady
state U with a variation éu will give rise to a change in the Hamiltonian

OH

AH[U; 6u) = H[U + bu] - H[U] = (% . su) + O((6u)?). (84)

#0

This is the reason why there is an O(6u) = O(a) term in the expression for potential energy.
For canonical systems, the underbraced term would vanish and the change in the Hamiltonian
would automatically be quadratic in the disturbance amplitude. This is not the case here,
but we know that generically there exists some Casimir C such that

i
Sul,_y  bu

(85)

uU
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So if we choose
A[U; bu| = H[U + éu] — H[U] + C[U + éu| - C[U], (86)
with C determined by (85), then we will have a quantity which by construction satisfies

6il
ou

oH  o6C

-@ao| -0 e

AlU;0]=0  and
‘ u=U

u=U

Hence A[U; 6u] = O((6u)?), and we have what we want.

This quantity A is the pseudoenergy (e.g. McIntyre & Shepherd 1987). It is an exact
nonlinear invariant of the equations of motion. Its construction involves a combination of
energy and a suitable Casimir. For disturbances to resting basic states, these Casimirs
invariably involve mass conservation. The available potential energy is evidently the non-
kinetic part of the pseudoenergy. To construct the available potential energy, therefore, we
need only know the Hamiltonian H; the dynamic variables, i.e. the fields u; and suitable
Casimirs C such that (85) is satisfied. One may well know these things without knowing J,
in which case the Hamiltonian structure underlies the method without appearing explicitly.

Prescient adumbrations of the above realization can be found in the classical GFD lit-
erature. In a brilliant and now largely forgotten paper, Fjgrtoft (1950) noted that (stably)
stratified, resting basic states were energy extrema for adiabatic disturbances; this varia-
tional principle corresponds to the Hamiltonian statement that resting steady states are
conditional extrema of the Hamiltonian, with the relevant Casimirs being those arising from
the material conservation of entropy. Building on Fjgrtoft’s work, Van Mieghem (1956) used
this variational principle to construct a small-amplitude expression for APE, thereby recov-
ering the formula of Lorenz (1955). This can now be seen as the non-kinetic part of the
small-amplitude (or quadratic) pseudoenergy.

Having examined this problem from the Hamiltonian standpoint, the questions raised at
the beginning of this sub-section may be answered immediately.

Question: Why is energy not good enough? Why do other conservation laws (like mass
conservation) need to be brought in?

Answer: Because the Eulerian descriptions of fluid motion are generally non-canonical,
which means that steady states are not necessarily energy extrema.

Question: Which conservation laws are needed?

Answer: Those associated with the non-canonical nature of the dynamics: the Casimir
invariants.

Question: Is there a systematic way to construct the APE?

Answer: The APE is the non-kinetic part of the pseudoenergy relative to a resting basic
state.

Question: Does the concept extend to arbitrary fluid systems?
Answer: Yes, provided the system is Hamiltonian.
Question: And does it extend to non-resting basic states?

Answer: In principle, yes — provided the pseudoenergy is sign-definite. See Section 4.3 for
further discussion.
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3.4 Example: stratified Boussinesq flow

The algorithm described above for constructing the APE will now be demonstrated in the
context of 3-D, incompressible, stratified, Boussinesq flow, governed by (74,75). The dynam-
ical variables are evidently p and v. The Hamiltonian is given by

’H = / / /D {%pool'vl2 + pgz} dzdydz, (88)

ith functional derivati
wi ctional derivatives oM 5H

E = Poo?, 5 = g=z.
The determination of an appropriate J gets us into the issue of constrained dynamics (see
Abarbanel et al. 1986; also Salmon 1988a), but for our purposes only the invariants  and C
are required. An unconstrained Hamiltonian representation of this system, in the form (1),
can be obtained by working in isentropic — or, in this case, isopycnal — coordinates (Holm
& Long 1989), but for applications it is desirable to have an expression for APE in physical
coordinates. ‘
What are the Casimirs for this system? It can be verified that the potential vorticity
q = w - Vp, where w = V x v, satisfies

(89)

¢ +v-Vqg=0. ' (90)

is a class of conserved quantities for arbitrary functions C. These are in fact the Casimirs, as
can be verified by examining the system in isopycnal coordinates. However, such verification
is not actually necessary: usually one can guess the Casimirs based on knowledge of the
materially conserved quantities; if one cannot satisfy the condition (85), then one must
consider a broader class of conserved functionals.

Taking the first variation of C gives

6 = / / /D {C,8p+ Cyéq} dodydz

- / / /D {Cobp+ Cl(V x 80) - Vp+ w - Vp]} dudydz. (92)
After integration by parts, one obtains
6C 6C '
=0V (Cw), 5=V x(CVp). (93)

We may now follow the recipe set forth earlier. Given a steady state U = (0, po(2)), C is
determined from the condition .
6H Y

Sl y S < poov=-Vx(CVp) at p=po,v=0

u=U
< 0=V x(C,Vp), (94)
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which will be satisfied if we take C = C(p), in conjunction with the condition

oH 6C ’
op ull op uU 9% P (Cw) at p=po

< gz=-C, at p=po. (95)

Now po(2), being monotonic by hypothesis, has a well-defined inverse, Z: i.e. z = Z(po(2)).
It can be easily seen that

P
Clo)=- [ 92(5) dp (96)
satisfies the required condition (95):
G|, = —9Z(p0) = ~g=. 97)

(It is in fact a general result that when the basic state is at rest, only that part of the Casimir
depending on the density (or more generally, the entropy) needs to be considered; possible
dependence on the potential vorticity is not required (see Shepherd 1993a). This is why
Fjgrtoft’s (1950) variational principle could describe all resting steady states.)

With this choice of C, the pseudoenergy takes the form

A = H[’U,p] - H[07 PO] + C[’U,p] - C[O, pO]
= [[[ {Geuto? + o= migz~ [ 92(5) ds} dodydz
= [/ /D{-;-poolvl"’ + (o= m)gZion)~ [ 97(po+ ) dp} dadydz

- / / /D{%POOW - /OHO 9l2(po + B) — Z(po)] dp } dadydsz. (98)
APE

This recovers the expression (82) obtained earlier by direct methods. Note that provided
g(dpo/dz) < 0, then g(dZ/dpo) < 0; thus the APE, and in consequence A itself, will neces-
sarily be positive definite for p — po # 0.

The finite-amplitude expression for APE provided above has a simple geometrical inter-
pretation: the APE is g times the area under the curve Z(p) (see below).

'Z(f)

f . fe
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3.5 Nonlinear static stability

The existence of a positive definite conserved quantity suggests stability. Of course, the
condition g(dpo/dz) < 0 is precisely the condition for static stability. Note that 6.4 = 0 by
construction while the second variation of A is

§2A = / / /D %{poolévlz— ﬁ(&p)z}dwdydz > 0. (99)

Thus by analogy with finite-dimensional systems, statically stable equilibria are elliptic fixed
points. This is what is usually referred to as formal stability (e.g. Holm et al. 1985; see also
Morrison’s lectures). However, for infinite-dimensional (or continuous) dynamical systems,
such as fluids, mere positivity of the second variation does not, in itself, establish anything
about stability. Instead, one must attempt to obtain explicit bounds on the growth of dis-
turbance norms. One might think it wise to begin with the linearized equations; however,
if stability is established in the linear dynamics this proves nothing for the actual dynam-
ics, since the system is Hamiltonian. (Stability can never be asymptotic for Hamiltonian
systems.) Thus one is forced to consider the full nonlinear dynamics right from the start.

Definition: (Normed Stability) If we measure the deviation from a particular steady field
U by the norm ||u’||, where u = U +/, then U is stable in that norm if for any ¢ > 0 there
exists a 6(¢€) > 0 such that

') <é = |lW®ll<e, V0. (100)
This is also called Liapunov stability.

In the present context we rha,y define our norm by
. _
2 _ 2 2
(v, p — pO)II* = ///D §{poo|'v| + Alp = po) } dzdydz, (101)

et = min{—gZ'(po)} > 0
c; = max{—gZ'(po)} < oo.

The existence of such constants ¢;, ¢; will be referred to as the convezity condition. Under
these circumstances it can be shown that the available potential energy,

with ¢ <A< c; where { (102)

p~po
APE = — [" 4(Z(p0 + 5) - Z(po)] dp, (103)
is bounded from both above and below:
1 1
501(»0 ~po)? < APE < -c(p — po)?. (104)

If Z(po) is smooth then this result follows immediately from Taylor’s remainder theorem.
However, it is true for Z(pp) that are only piecewise differentiable. This bound on the APE,
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coupled with the fact that the pseudoenergy A is conserved, leads to the following chain of
inequalities for basic flows satisfying the convexity condition (102):

oo = )OI = [[ [ 5{moloP + 3o - p)?}0) dodye

< %A(t) = gA(O) < 2iw,0- WO (105)

By taking § = 1/c;/cz¢, (105) proves nonlinear normed stability in the norm defined by (101).

It is well known that the small-amplitude definition of APE is closely connected to lin-
earized static stability. The above results show that the definition of finite-amplitude APE
is closely connected to finite-amplitude static stability.

A comment should be made concerning the definition of the function Z(-) used to calculate
the pseudoenergy, which appears in the integrand of expression (103) for the APE. What if
p lies outside the range of po? How do we evaluate Z(p) in that case? First note that if a.
disturbance is “dynamically accessible” (see Morrison’s lectures) then p always lies within the
range of pp. However if one is interested in a larger class of disturbances, then the definition
of Z(p) can be extended outside the range of pp while still keeping A as a conserved quantity.
This is because any function C(p) can be used to obtain a Casimir. In fact, it is only the
condition that A = O(a?) in the small-amplitude limit that determined the particular choice
of C involving Z, and this constraint only determines C for values of its argument lying
within the range of po. So to allow the possibility of arbitrary disturbances, the expression
(103) can still be used provided we extend the function Z(p) outside the range of po in some
arbitrary way, subject only to

1< —9Z'(p) < (106)

in order not to weaken our bounds. Clearly, this extension can always be made.

3.6 Nonlinear saturation of instabilities

The APE provides a rigorous upper bound on the saturation of static instabilities. In a
way, this is a more robust definition of static stability than the concept of normed stability
presented in the previous sub-section. '

To see this, consider the case of a fluid that is initially at rest but statically unstable.
We may consider this initial state to be a (finite-amplitude) disturbance to some statically
stable, resting basic state. Using conservation of the pseudoenergy relative to this basic
state, and noting that v(¢t = 0) = 0 by hypothesis, yields

1 9 '
- < = = .
/ //D 2poo|v| (t) dzdydz < A(t) = A(0) // /D APE(0) dzdydz (107)
Thus the kinetic energy at any time ¢ is bounded from above by the initial APE: this is, after

all, why it was called “available” by Lorenz. For example, consider the situation sketched
below.
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The initial density profile p(2) is shown by the solid line, and consists of a statically unstable
inversion layer —Az < z < Az located within a stably stratified region with dp/dz = —r.
Suppose for definiteness that p(z = 0) = 0. (Recall that p is the departure from the reference

state poo, and therefore may be negative.) One may choose as the basic state po(z) = —rz,
which is stable and which satisfies (102) with ¢; = ¢; = g/r. The initial disturbance is then
, %’—) z, if-Az<2< Az
p=p—po=4 2% (108)
0, otherwise .

The integrated APE (averaged in z and ) is then easily computed, yielding the saturation
bound

///D %pooh;lz(t) dzdydz < gg; (Ap)°Az. (109)

It is interesting to note here that the disturbance p’ is not, in general, dynamically accessible;
or, rather, the initial condition p(¢ = 0) is not dynamically accessible from the basic state
po(2). It would only be so in the special case Ap/Az = r. The bound represented by (109)
therefore highlights the fact that pseudoenergy conservation holds for arbitrary disturbances,
* not just dynamically accessible ones. It also demonstrates that, in many practical cases of
interest, the freedom to consider disturbances that are not dynamically accessible is quite
useful. The original, physical definition of APE proposed by Margules (1903) and formalized
by Lorenz (1955) was keyed around the idea of dynamically accessible perturbations: the
APE was defined to be the amount of energy released in an adiabatic rearrangement of the
mass into a statically stable state. The variational approach of Fjgrtoft (1950) and Van
Mieghem (1956) likewise builds dynamical accessibility directly into the theory. In contrast,
the use of integral invariants, in particular the pseudoenergy, goes beyond this in a powerful
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way: the basic state may be any statically stable state, not just the dynamically accessible
one. This insight was first noted by Holliday & McIntyre (1981) and Andrews (1981), and
is vividly demonstrated by the above example.

One may logically define the APE in (107) to be the minimum APE over all possible
choices of the stable basic state. This extremization problem is highly non-trivial, and would
make a good topic for further study from a mathematical perspective. In the above example,
for instance, the expression (109) is merely one bound, not necessarily the minimum one.

Exercise: Calculate the amount of APE in the initial condition of the above example,
taking the basic state po(z) to be the unique, dynamically accessible state obtained through
an adiabatic rearrangement of the mass.

There is a well-known analogy between static stability and so-called symmetric stability:
namely the stability of a baroclinic flow to disturbances that do not vary in the downstream
direction (also known as “slantwise convection”). This analogy has recently been exploited
by Cho, Shepherd & Vladimirov (1993), who prove a nonlinear stability theorem and use it
to determine a finite-amplitude APE for such motion.

4 Pseudoenergy and Arnol’d’s stability theorems

4.1 Arnol’d’s stability theorems

In the previous section the steady basic state was at rest, so the kinetic energy contribution
to the pseudoenergy was solely the disturbance kinetic energy. But what happens when
the kinetic energy of the steady state is nonzero? To explore this question, we study the
barotropic vorticity equation on the S-plane (cf. §1.4)

P, +0(®,P) =0, (110)
where ® is the stream function, P is the potential vorticity
P=V?®+ f + By + h(z,y), (111)
and h is the topographic height. Three possible geometries are considered: (i) periodic in
z and y; (ii) unbounded, with decay conditions at infinity; and (iii) multiple boundaries (as
with a zonal channel). The last case is the most complicated, since the boundary terms enter
the equations directly, so we choose to analyze it.

Suppose there exists a steady solution, ® = ¥, P = Q with ¥ = ¥(Q) a monotonic
function. We seek Casimirs such that §4 = 0. We have

I —
H= / /D SIVef dady, (112)

C= / /D C(P)dwdy—}-zi:am,:, (113)
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where p; = §,p, V® - fids is the circulation on each connected piece, 8D;, of the boundary
0D. To determine the pseudoenergy, we must solve the equations

oH 6C oH 6C

Plog  ®Plog’  Omilpq  OMilsg ()
The left half of (114) gives (see §1.4)
¥ =C'Q), (115)
which integrates to
c@= [ wmyn, (116)
while the right half of (114) gives
wlaD‘_ = —a;. (117)
If we consider the disturbance problem
P=Q+gq, ®=Y+9, m=Ii+, (118)

then noting that ¢ = V21 we construct the finite-amplitude pseudoenergy as follows:
A = H[Q+q,Ti+v]-H[Q,Ti]+C[Q+q,Ti + %] - C[Q,T]

- //D{V‘I' -V + %IVW + /QQﬂ (§) dq} dzdy + Za,fy,-
— ([ 40 @v) - vy Soup [ 0@+ ) da} dody - 9], w119

In the last line, the first term can be directly integrated and found to cancel the boundary
circulation terms. Furthermore, noting that

—uviy=—vq=- [ ¥(Q), (120)

the pseudoenergy can be written simply as

A= [[ 51998+ [W@+d - w(Q)da} dudy (121)

(McIntyre & Shepherd 1987). The pseudoenergy is an exact, nonlinear invariant, as may
be checked by direct substitution into the equations of motion. It is valid for arbitrary
disturbances (not necessarily dynamically accessible ones). If there exist values of Q + ¢
outside the range of @, one can extend the definition of ¥(Q) arbitrarily to cover those
values, as discussed in §3.5. A is evidently sign-definite when

av
5" (122)

Essentially, this is Arnol’d’s (1966) first stability theorem.

-
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Suppose that ’
dv av '
= {dQ}>0 C = ma.x{dQ} ‘ (123)

In this case we can estabhsh normed stability of the basic state. The “convexity” condltlon
provides

—clq2< / [T(Q+4q) —¥(@)dj < czq, (124)

which is valid for continuous (possibly non-smooth) ¥(Q). In particular, let us choose the
norm defined by

lalP = [[ 3{V17 + g%} dady, (125)

with ¢; < A < ¢3. Then

llg@)II* < —A(t)——A(0)< IIq(O)II2 (126)

So given € > 0, choose § = y/c1/cze to prove nonlinear normed stability. As with static
stability, this holds for arbitrarily large disturbances.

It is important to emphasize that the demonstration of normed stability provided above
depends on the choice of norm. For normed stability, it is always essential to specify the
norm; this is because in infinite-dimensional spaces, all norms are not equivalent. This point
is highlighted by the following example.

Consider (110) in the special case P = V2®, and introduce a basic state U(y) = \y. The
disturbance (g,)) is given by

1 '
P=Q+q=-A+gq, <I>=\Il+¢_—_-—§/\y2+¢, (127)
and the exact equation for the disturbance vorticity g = V2 is

¢ = —9(¥,q) - 0(,Q) — (¥, 9) = —Ayg. — 8(%, q). (128)
Multiplying (128) by g and integrating over the domain yields

%//D -;-q"’da:dy = —//D/\ytjqz dxdy—//;) q3(¢,Q)didy
2 o) ] v
Y | (129)

This proves that 2-D linear shear flow is stable in the enstrophy norm. However, consider an
initial condition consisting of a plane wave q(t = 0) = R{e!*=+o¥)}, Then the disturbance
energy is given by (e.g. Shepherd 1985)

1 1¢%(t) dxd 39°(0) dzd
&0 = [ 3IVHP() dody = 12200l _ TpatOdody =1

136



It can be shown that I evolves with time according to ! = lo + Akt, while k is constant. So
for Iy < 0 and Ak > 0, the energy will attain its maximum amplification

El) K+ —l
0 B % YT

Clearly, the amplification described by (131) becomes arbitrarily large in the limit |lp] — oo.
This example demonstrates the point that stability in one norm (here the enstrophy) does
not imply stability in another (here the energy).

Returning to the general form of (110), consider the special case of zonal (z-invariant)
flow, with h = 0. Then the condition

W _vy_v,_-U_

iQ VQ Q Q ,

is sufficient for stability of the flow. This is the nonlinear generalization of the result of
Fjgrtoft (1950).

There is an interesting possibility in this barotropic case which did not arise in the previ-

ously discussed case of static stability. Recall from §3.5 that in that case the pseudoenergy
was given by

(131)

0 (132)

A= ///D{%poolvl2 + APE(p — po)} dxdyd;. (133)

Since p and v are independent variables, A can never be negative definite. This is like the
case of “natural systems” discussed in traditional classical mechanics. In the present case,
however, there is only one dynamical variable, and in principle A could be negative definite.
This gives what is called Arnol’d’s (1966) second stability theorem.

How does this happen? Suppose

4 _f dv B dv
a—é<0 and cl-rmn{-—w}>0, oz_ma.x{——}<oo. (134)

Then . 1
[ ®@+2-v@) di< -sad, (135)

so this quantity has the potential for being more negative than 1| V4|2 is positive, when
integrated over the domain. In fact, for bounded domains this is possible. A detailed
discussion is provided in McIntyre & Shepherd (1987, §6).

4.2 Andrews’ theorem

The appearance of Arnol’d-type stability arguments created considerable interest in the
meteorological community, for it appeared that they could be used to examine the stability
of non-parallel flow profiles ¥ = ¥(Q). However, Amol’d’s theorems turn out to be not as
powerful as they might seem in this regard. A theorem proved by Andrews (1984) shows
this quite succinctly, as follows.

Suppose we are given a basic flow profile ¥ = ¥(Q), and suppose that the given problem
is zonally symmetric: i.e. h = h(y), and the boundaries (if any) are independent of z. A
zonal channel would be the most common such geometry.
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Claim: If % > 0, then @, =0 and ¥, =0.

Proof: The chain rule of differentiation implies
¥, = ¥ (Q)Q-- (136)
Multiplying this expression by @, and integrating over the domain yields
[ ¥:Qedzdy = [[ ¥(Q)(Qu) dady
— / /D U, V20, dzdy = / /D V(Q) (Qn)? dzdy
— / /D V. (0, VV,)dedy = / fD (VIR + ¥ (Q) (@)} dedy.  (137)

The integral on the left-hand side vanishes if the boundaries are zonally symmetric, which
implies that ¥, = 0 = @, everywhere.

Therefore, any flow in a zonally symmetric domain that is stable by Arnol’d’s first theorem
must itself be zonally symmetric! The argument can also be shown to apply to Arnol’d’s
second theorem (Carnevale & Shepherd 1990). These results help explain the conspicuous
lack of non-zonal Arnol’d-stable flows in the literature. _

There is a simple heuristic explanation of Andrews’ theorem. If a problem is zonally
symmetric, but the basic state is non-zonal, then a possible disturbance is the simple one
generated by a zonal translation of the basic state. This zonal translation cannot change the
pseudoenergy. Therefore, such basic states cannot be true extrema of the pseudoenergy —
equivalently, A is not sign-definite — which implies that they cannot be Arnol’d stable.

However, it should be noted that Andrews’ theorem may not apply to certain zonally
symmetric problems in unbounded domains because of the boundary conditions at infin-
ity (Carnevale & Shepherd 1990). Otherwise one could deduce, for example, that circular
vortices were not Arnol’d stable — something which is demonstrably untrue.

4.3 Available energy

Can we regard the quantity .
[ Q@ +9-v@)dz (138)

as a generalization of APE? In a sense, yes. For any stable flow (¥, Q) with d¥/dQ > 0, we
have

[ 5I90) dedy < AGe) = A(O) = AIQ54(O)] (139)

For a given initial condition, P(0), one can vary the right-hand side of (139) over various
stable @ to seek the tightest possible bound on the disturbance energy.

In the case of static stability, the variations were over pp and didn’t affect 1|v|?>. Here
1 = ® — ¥, so when one changes the basic flow, one also changes the definition of the
disturbance. This is not a satisfactory situation.
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Suppose, however, that the problem is zona]iy symmetric and that one is interested in
the eddy energy. We may write

® =3 + & where () = z-average and & = 0. (140)
Then, if we choose a zonally symmetric flow (as required by Andrews’ theorem), i.e.
v =0, Q =0, (141)
this implies
& =, P =q. (142)

Hence (¢’,9) are independent of the choice of the basic state. Then, for the eddy energy we
have the upper bound

£'= [[ 3IVerQ = [[ JviPOddy < [ Lvure dedy
< AQiq0)] (143)

Now one can vary the right-hand side of (143) to seek the tightest possible bound on the
eddy energy.

We now illustrate the general method by applying it to the case of baroclinic flow.

4.4 Nonlinear saturation of baroclinic instability

The two-layer model was presented in §2.1. The notation has been changed somewhat for
convenience; g there corresponds to P here, while 9 there corresponds to ® here. Further
details of the following analysis may be found in Shepherd (1993b).

Suppose F} = F; = F in the domain 0 < y < 1, periodic in 2. The potential vorticity in
each layer is given by :

P.=V?®; + (-1)'F(®, - &)+ f+ Py [i=1,2] (144)
Consider the basic-state stream function ¥; = ¥;(Q;) corresponding to the purely zonal flow
Uly) = —d¥/dy [i=1,2], | (145)
with potential vorticity
Qi(y) = V2 + (-1)'F(¥: — )+ f+ By [i=1,2]. (146)
Let #; be the disturbance stream function, so that ‘
@ =Vi(y) + iz y,t) [i=1,2]. (147)

This allows the pseudoenergy to be written
- 1 2 2 2
A=/ /D{§[|V¢1| + VP + P — )]

+ [M19Qu+ 9 - m@ldi + [ [92(Qa + ) - L:(Q0) da} dody, (148)
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where ¢; is the disturbance potential vorticity

=V + (1) F(r —92) [i=1,2) (149)
It is clear from (148) that if |
av, ¥,
>0 d >0, 150
aQ, and 30, (150)

then A > 0. This is Arnol’d’s first stability theorem applied to quasi-geostrophic flow (Holm
et al. 1985). Since we are considering the zonally symmetric case, these conditions are
satisfied if U,

dQ:/dy

put this way, the theorem represents the nonlinear version of the Fjgrtoft-Pedlosky theorem.
Suppose our initial condition consists of an infinitesimal disturbance to the Phillips zonal

° 0% 0o
1 A 2 A
21 —(1+e)+ —_ =, = 152
5 Ul ( e) Uo, 3y Uz = uy, ( ) )

where uy is an arbitrary constant. The flow (152) is known to be unstable if € > 0, provided
the domain is sufficiently wide in an appropriate sense (e.g. Pedlosky 1987, §7.11).
Now choose a one-parameter family of stable basic flows

o, oY,

<0 [i=1,2); (151)

—%‘_Ul ——(1—6)+u0, —E=U2=uo, (153)
with associated potential vorticity
=B2-8)y-N+f+B8)  Q=p5y—N+f+p (154)

where ) is a constant of integration. We have three free parameters: A, ug, and 6. For all A,
up, and é such that d¥;/dQ; > 0 we then have the rigorous upper bound on the eddy energy

gl

[ {198, + (Va4 + P, - )2} dudy

//D §{|V¢1|2 + |Vaha|? + F(3py — ¢2)2} dzdy
A()

A(0)
-ﬁ-—(—%}@—{ 1+F/ (y— ,\)2dy]

1:8(1 = 8) + uoF ) )
3l ﬂF(2) ;)0 uD]F / (RR) dy}

+ terms involving the initial non-zonal disturbance. (155)

IN

IA

The contribution to the initial pseudoenergy associated with the initial non-zonal disturbance
can, of course, be included in the above bound. However, in the situation we are considering
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here of an infinitesimal initial disturbance to the Phillips initial condition, this contribution
is negligible compared with the pseudoenergy arising from the zonal-mean part of the initial
disturbance to the stable basic flow, which is the part written out explicitly in the last line
of (155).

Now, choosing A = 1 so that

1 1
— 2 [ Jp—
|-y =, (156)
which is the best choice, and setting
A(1 - 6)

BLl=8)+uF=0 = y= = (157)
teaves ( +6 (1-6)Fy B%*e+6)? F
A(0) = 2= [1 + 5t ] = (264F2) 12+ -6—]. (158)

Setting 0A(0)/96 =0 ylelds a minimum at

F | '
5= 48[ 1+ 1+ (%e/F)] ~e for e<l. (159)

One could, of course, use the optimal value of §, but the simple choice § = € certainly gives
a valid saturation bound too, which is

< A(0) = (1 + %) (160)

Now the eddy energy is also bounded by the total energy of the system, namely

26
E' < Eotal = 2§—F(l + =) 1+¢7 (161)

However it is clear that £;4,] > A(0) for € < 1, so the bound (160) is providing a non-trivial
constraint on the dynamics.
This gives a bound on the scaling of the saturation amplitude of the instability. But is
it any good? Weakly-nonlinear theory (Pedlosky 1970; Warn & Gauthier 1989) gives
32
fax ~ = (162)
for € « 1, which is the same scaling as (160); the numerical factors in (162) are 1/72 for the
non-resonant case, and 1/8 for the resonant case. This is to be compared with a coefficient
of 1/6 for the stability-based bound. So the bound is, in fact, not too bad as an estimate of

the saturation amplitude.
An important generalization of these saturation bounds is to forced-dissipative systems.

If
DpP
Dt

(potential vorticity relaxation), where P, = P(t = 0), then these bounds on the eddy energy
remain valid (see Shepherd 1988b).

= —r(P—P,) ' (163)
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5 Pseudomomentum

5.1 General construction

We have seen how one can construct the pseudoenergy, a second-order invariant, for distur-
bances to a steady basic state under time-invariant dynamics. Similarly, if the dynamics
under consideration is invariant to translations in the z direction, we may construct a second-
order invariant for disturbances to xz-invariant basic states.

Recall how we constructed the pseudoenergy from the Hamiltonian, A, and the Casimirs,
C: since the basic state U in that case is a steady solution of the dynamics,

;7

= =0. (164)

u=U

It follows that for some Casimir C,

oM 6C

—_— == — . 165
ou uU ou ulU (165)

The pseudoenergy is then
AlU; éu] = H[U + éu] — H[U] + C[U + éu] — C[U], (166)

where C is defined by (165).

In the very same way, we may construct the pseudomomentum from the momentum
invariant, M. By definition of M (see §1.5), J(6 M /éu) = —u.. Now, since the Hamiltonian
is presumed to be invariant under translations in the z direction, it follows from Noether’s
theorem that M is an integral of the motion. If the basic state U is also invariant with
respect to z translations, then ‘

ML _po—o. R (167)
'6'u,. u=U
It follows that there exists a C such that
Mmoo _ & (168)
bu u=U bu u=U
Finally we define the pseudomomentum by
AlU; bu) = M[U + éu| — M[U] +C[U + éu] - C[U], (169)

where C is defined by (168) so that (6.4/6u)|,,_gy = 0. In fact, it is clear from Noether’s
theorem that we may generate a similar functional for any continuous symmetry of the
dynamics.

The pseudomomentum, like the pseudoenergy, is guaranteed to have the following nice
properties: (i) it is calculable to leading order from linear theory; (ii) it may be sign-definite
under certain conditions. If we find some zonal basic states for which the pseudomomentum
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is sign definite, then it is clear that we are in a position to generate more nonlinear stability
theorems.

If the basic flow is both zonally symmetric and steady (as zonally symmetric flows often
are), we may combine the pseudoenergy and the pseudomomentum to generate still more
quadratic invariants, according to

A= (H+aM+ 0] — (H+aM+0C)[U]. (170)

Here we may choose a arbitrarily and, again, C is chosen so that (6.A4/6u)|,,_gy = 0.

5.2 Example: Barotropic vorticity equation

In this section we will develop an expression for the pseudomomentum of the barotropic
model in a [-plane zonal channel. The flows we will consider are governed by the vorticity
equation

P, +0(®,P)=0 (171)

where ® is the stream function, and P is the absolute vorticity
P=V?® + f + By. (172)

For definiteness, we consider flows that are periodic in the z (zonal) direction, and bounded
by rigid walls in the y direction.

We take as the state variable the absolute vorticity, P, and the boundary circulations,
pi = $pp, V@ - i ds. Recall that in this formulation, the Hamiltonian is given by

n= [ %IV@Izdxdy. (173)

The cosymplectic operator, J, acting on the basis (P, p,, p2), is given by

-6(P,-) 0 0
J= 0o 00|. (174)
0 00

The Casimirs associated with J are functionals of the form
2
= C P i i 175
c=[[ o ) dady + 3 aup (175)

for arbitrary functions C(-) and scalars a;. The momentum invariant M is found by solving

oP T oM M SM\T 0P oM
The solution (to within a Casimir) of (176) is given by
oM
e //Dde:cdy. (177)
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This expression differs from the usual definition of momentum, which is [f, udzdy. The
reader may verify (cf. §1.5) that the difference between these two expressions can be written
solely as a function of the boundary circulations p; and p — in other words, the difference
is a Casimir.

If the basic state is given by ® = ¥, P = @, then to find the pseudomomentum we must

solve

M _5

6P |p_g 6P|, Q
Note that this requires @ to be independent of z, i.e. Q = Q(y). Thus zonally symmetric

states are seen to be constrained extrema of M, just as steady states are constrained extrema
of H. Solving (178) for C yields

= y=-C"(Q). | (178)

c@=-["Y@d (179

where Y'(-) is the inverse of Q(y): that is, y = Y(Q(y)).

Note that since the disturbance need not be dynamically accessible, we may (as before)
extend the definition of Y(-), if required, to cover values of its argument outside the range
of the basic state Q.

The pseudomomentum, A, is given by

A= [[ y(P-Q)dsdy +CIP] - C[QL (180)

Setting P = Q + ¢, and substituting (179) for C, yields

A= [[ {va- [ (@) da} dady. (181)

Finally, since y = Y (Q), we may write

A= / /D Adudy= | /D {- /0 Y(Q+@ - Y(Q)] dg} dudy (182)

(Killworth & MclIntyre 1985). Note the similarity between the pseudomomentum (182)
and the expression in (98) for the APE. As a consequence, (182) has the same geometrical
interpretation as the APE (see the sketch in §3.4).

If dQ/dy (and thus dY /dQ) is sign-definite, then so is A. In particular if dY/dQ # 0
and

0<Cl

<
a0 ¢ < 00, _ (183)

then 1 1
5ad° < 4] < 504 (184)

This is the convexity condition for this problem. We then have normed stability under the
enstrophy norm. In particular, if we define our norm according to

I = [[ 36 dady, (185)
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then we have 1 ]
la®I? < —A®) = —A© < ZqO)I?, (186)
1 41 G

which proves normed stability.

As with the previous stability criteria, this stability criterion applies to arbitrarily large
disturbances. It is the finite-amplitude version of the Rayleigh-Kuo theorem (Shepherd
1988b). The same procedure applied to the quasi-geostrophic equations yields a finite-
amplitude Charney-Stern theorem (Shepherd 1988a, 1989).

In §3.6 and §4.4, pseudoenergy-based finite-amplitude stability theorems were used to ob-
tain rigorous upper bounds on the nonlinear saturation of instabilities. The same procedure
is of course possible with the pseudomomentum. For a general discussion and applications
to parallel flows on the barotropic G-plane, see Shepherd (1988b). Further applications are
provided in Shepherd (1988a, 1989, 1991).

5.3 Wave, mean-flow interaction

In this section we shed some light on why A is called the pseudomomentum. Still considering
the barotropic vorticity equation, if we take the z-average of the zonal momentum equation
we get

ou _ 0(u?) 0 (uv) 3p
o or Oy fﬁ—ax' (187)

The first and last two terms on the right-hand side vanish due to the presumed periodicity
in z, together with the fact that v = —, so 7= 0. This leaves
@ _ 0 (u'v')
ot oy ’

(188)

where the primes indicate departures from the z-average flow. Using the fact that the flow
is non-divergent, we can rewrite the previous equation as

=5 - 50) + g - )] (189)

The second term on the right-hand side vanishes under the zona.l'avera,ge, while the first
term represents the meridional flux of potential vorticity, q', hence

0 _ —
— =17q. 190
5 = V¢ (190)
On the other hand, from the linearized potential vorticity equation
¢+ U, +v'Qy=0 (191)
we get ;
v'=—=(g+Ug). (192)
Qy
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Substituting this expression for v’ into (190) then leads to
ou_ 014
ot at\2Q,/"
This is the well-known relation of Taylor (1915), describing how disturbance growth or decay

induces mean-flow changes. But note that the small-amplitude limit of the pseudomomentum
density (182) is

(193)

R — e —— 194
2Q, 194
Combining this with the previous equation then yields the small-amplitude relation
ou 0A
il (195)

which justifies the interpretation of 4 as a pseudomomentum. (The prefix “pseudo” has
led to some confusion. However, to discuss the “momentum” of waves has historically been
a source of profound confusion! For background on this issue, as well as a defense of the
current nomenclature, the reader is referred to the spirited article of McIntyre (1981).)
In the continuously stratified quasi-geostrophic case, (190) generalizes to (see e.g. Ped-
losky 1987, §6.14) ,
£(3) - 20, (196)

where £ is the linear elliptic operator

2 10p 0
=—4+——E£= 197

6y2+psazSaz (_ )
The pseudomomentum conservation relation may be written in local form, including non-

conservative effects, as

, %é +V-F=D, (198)
where D represents the non-conservative effects and —F is the so-called Eliassen-Palm flux
(Andrews & Mclntyre 1976), satisfying

vV.F=—vq. (199)

(The minus sign in the definition of the E-P flux is for historical reasons: the introduction of
the E-P flux predated its understanding in terms of pseudomomentum.) From these relations
we get the following equation for the mean-flow tendency:

ouy & 92 8 A
L(E”) =57 VD =55 5 (V-F) = 57 (% — D). (200)

Relation (200) generalizes (195) in two distinct ways: first, by including non-conservative
effects; and second, by extending the relation to quasi-geostrophic flow. Integrating (200) in
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time over some finite time interval then gives the following expression for the net change in
the zonal flow, A%: \
1y 0 -
ANg=L ‘{a—w(AZ—/Ddt)}. (201)
That is, to have a change in %, we need either transience in the wave activity, AA # 0,
or wave-activity dissipation, D # 0; this is the “non-acceleration theorem” (Andrews &
Mclntyre 1976). The insight provided by this theoretical framework has recently led to
profound advances in our understanding of some classical questions in large-scale atmospheric
dynamics, including the maintenance of the westerlies (see the discussion in Shepherd 1992b).
The beauty of the Hamiltonian framework is that it provides insight into which aspects of
a particular derivation may be generalizable to other systems. For example, the wave, mean-
flow interaction theory exemplified by the relation (200) is clearly generalizable through the
unifying concept of pseudomomentum (e.g. Scinocca & Shepherd 1992; Kushner & Shepherd
1993).

5.4 'Wave action

There is a classical literature in fluid mechanics that is relevant to wave propagation in
inhomogeneous, moving media. For WKB conditions — namely, a nearly monochromatic
wave packet propagating in a slowly varying background state — there is a conservation
law for the so-called “wave action” (Whitham 1965; Bretherton & Garrett 1968). The wave
action is given by E'/d, where F’ is the wave energy (as measured in the local frame of
reference, moving with the mean flow) and & is the intrinsic frequency of the waves (i.e. the
frequency in the local frame of reference). In the case of the barotropic vorticity equation
with a zonal basic state, for example,

' _ Lgm . . kG -
E' = 2|V1/}| and w= oW (202)

where k and ! are the  and y wavenumbers, respectively, @, is the basic-state potential-
vorticity gradient, and the overbar now represents an average over the phase of the waves.
Thus the wave action for Rossby waves is given by

E_ 1 (BP+BVYE _ 147
o 2% Qy T 2%Q,

(203)

Referring to (194), we conclude that the wave action is the pseudomomentum divided by
the zonal wavenumber, 5 A

-z (204)
Of course, wave action is a local concept which may be defined even when there is no global
symmetry in the problem (provided the WKB conditions are satisfied). However, when the
basic state has a zonal symmetry, the pseudomomentum may be defined and is related to the
wave action in the above fashion; the factor of k is then irrelevant since it is constant. Under
such conditions, the pseudomomentum may be regarded as a generalization of wave action

insofar as it is not restricted to WKB (slowly varying) conditions, neither is it restricted to
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small amplitude. This connection has already been made by Andrews & Mclntyre (1978)
within the context of Generalized Lagrangian Mean theory; the present treatment illustrates
how it holds for the Eulerian formulation of fluid dynamics.

5.5 Instabilities

Analysis of normal-mode instabilities is often facilitated by the use of quadratic invariants
such as pseudomomentum and pseudoenergy. This is because for a normal mode,

A= Ape®” (205)

where Ay = A(t = 0) and o is the real part of the growth rate. However, A is conserved in
time, which implies that ¢.A = 0. Therefore, we conclude that growing or decaying normal
modes (with o # 0) must have A = 0. [In fact, many of the well-known derivations of linear
stability criteria involve the implicit use of this relation 0.4 = 0: an example is Pedlosky
(1987, Eq.(7.4.22))].

The constraint 4 = 0 on normal-mode instabilities means that such instabilities consist
of regions of positive and negative A. This is a generalization of the notion of positive and
negative energy modes discussed in Morrison’s lectures. It is clear from the Hamiltonian
perspective that one may speak of positive and negative pseudoenergy, or positive and nega-
tive pseudomomentum, or even some combination of the two, depending on which invariant
quantity is most appropriate for the problem at hand.

This concept is most useful when the wave-activity invariant being considered is sign-
definite in certain parts of the flow, and can be associated (in an appropriate limiting sense)
with certain wave modes. Typically in the short-wave limit these modes decouple and are
neutral.

As an example, consider baroclinic instability in the continuously stratified quasi-geostro-
phic model, with 2z, < z < 2;. In this case the small-amplitude expansion of the pseudomo-
mentum gives (Shepherd 1989)

A=A+ A+ As (206)
where e
=— 207
/ /f 2 dQ/d dedydz, (207)
2
// 2 dAl/dy dody| f/ 2 dAo/d dody| (208)
Here @ and ¢ are the basic-state and disturbance potential vorticity fields, while A; =
LV l - and \; = Sz/)zl s where ¥ and 7 are the basic-state and disturbance stream

function fields. All known (inviscid) quasi-geostrophic baroclinic instabilities may be under-
stood within this framework. In the case of the Eady model, we have

dQ ~ dA,

a0 dy

(209)
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Therefore, in this model instability is possible with A; = 0, A, < 0, and A3 > 0. In the case
of the Charney model there is no upper lid so the contribution to .4, vanishes, while

d—Q>0 and o g (210)
dy dy
Thus in this case 4; < 0, A; = 0, and A; > 0. For internal baroclinic instability (like in the
Phillips model), A; = 0 and A3 = 0 so we must have A, = 0, but characteristically

dQ>O for 2>2 and @<0 for z2< 2 (211)
dy dy

for some z, so A, consists of a negative-A mode above a positive-A mode.

A very important feature of these wave-activity invariants is that their finite-amplitude
forms are meaningful even for discontinuous basic-state profiles. Indeed, the understanding
of instabilities in terms of interacting modes is clearest when the modes are spatially localized
on material interfaces. For example, consider the barotropic system with a basic state

_ Qz, y> 0
Q) = { Qv 3 <0 (212)

where @1 < Q2. We can study the stability of this profile by looking at the regions where
A # 0. In this case the pseudomomentum is given by

q
4=-['v@+9-v@Q)di (213)
Note that A = 0 except in the hatched regions (see figure below).
_ Q.
P= Qq Y=

y=o

- P= S, Y'[__) 5
Q

It turns out (see Shepherd 19885, Appendix A) that
_ - Lo, _ 2
A= [[ Adedy = ~2(@: - Q) P dz, (214)

where 7 is the meridional displacement of the material contour where the vorticity jump
occurs. Evidently in this case A < 0, and the basic state (212) is stable. The above formula
can be generalized for N contours (denoted by C;) as follows:

A:/[DAdmdy—--Z}{ Pdr. (215)

So we see that the pseudomomentum resides in each contour, and has a sign opposite to that
of the vorticity jump. This is in contrast to the pseudoenergy, which is not so localized.

.
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