The zeroth law of turbulence
and its discontents
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If in an experiment on turbulent flow all control parameters are fixed,
except for the viscosity, which is lowered as much as possible, the
enerqgy dissipation per unit mass approaches a nonzero limit.

Turbulence - the Legacy of A.N. Kolmogorov
Uriel Frisch (1996)



An example of the zeroth
law of turbulence

“If my views be correct, a fall of 800 feet will
generate one degree of heat, and the temperature

of the river Niagara will be raised about one fifth
of a degree by its fall of 160 feet” (Joule 1845)

Wikimedia

H 10 x 48
AT =97 22X 011K
Cp 4200
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¢p = 4200JK " 1kg™1

(For seawater ¢ is close to 4000MKY)

This dissipative process requires A
molecular viscosity. But the coefficient -*‘
of viscosity V is very small and Joule "
takes it as given, or obvious, that the
exact value of V unimportant.



That’s a great story about Joule’s
honeymoon, but is it true!?
He did the calculation, but did he
measure the temperature rise!



That’s a great story about Joule’s
honeymoon, but is it true?
He did the calculation, but did he
measure the temperature rise!

The temperature increase, 0./ degree, is smaller than the expected variation
of air temperature over H=50m. (For example, the average tropospheric
lapse rate is 6.6 degrees per kilometer.)

But is the water in thermal equilibrium with atmosphere!?
What about air drag on falling drops, and evaporative cooling of spray?

The temperature increase is buried in a lot of noise and the story is
probably apocryphal.....

(Craig Bohren, American Journal of Physics)



Another example

1
Drag = §C’D(R)pAU2 with R=—

and Rlim Cp(R) is non-zero



“Turbulence” Uriel

Frisch (1996)
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Shape Drag The drag coefficient means

Coefficient

Sphare = O 047 the Iimit at inﬁnite
Reynolds number.

Half-zphcre —— G 0.42

Cone —» q 0.50
Cubs —— D 1.05

et — > om There is no drag without viscosity, but
irg — 0.62 ultimately the value of V is irrelevant.
P ﬂ (] (] [ ) (]

chot > [ s vV—0 is a singular limit.

L pe—— This is the zeroth law of turbulence.
Bozy
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Measurad Draq Coefficients
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D’Alembert’s paradox

“The theory (potential flow), developed in all
possible rigor, gives, at least in several cases,
a strictly vanishing resistance, a sinqgular

Z———  paradox which | leave to future Geometers”
D’Alembert
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“Fluid mechanics is divided between
hydraulic engineers who observe
phenomena which cannot be explained
and mathematicians who explain
phenomena which cannot be observed.”

Cyril Hinselwood

The zeroth law of turbulence

If in an experiment on turbulent flow all control parameters are fixed,
except for the viscosity, which is lowered as much as possible, the
enerqgy dissipation per unit mass approaches a nonzero limit.

“Turbulence - the Legacy of A.N. Kolmogorov”
Uriel Frisch (1996)



An enclosed incompressible fluid

pu; +u-Vu)+Vp=puVu+ f
and V-.u =0

The power integral is:

d
—/%\u!Qdm:/u-fda:—V/]w\Qdaz
dt Jy % %

with the vorticity w =V X u

The zeroth law is: lm V/ w|* dx # 0
v

v—()

Turbulence is a singular limit
(a “dissipative anomaly”).
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Viscous dissipation scale
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A.K.A. the
Kolmogorov scale

3D turbulent
energy cascade

Big whorls have little whorls
Which feed on their velocity,
And little whorls have lesser whorls
And so on to viscosity.

— L. F. Richardson

Aside: why turbulence in a
coffee cup is “stronger” than
turbulence in the ocean.

10—18 1/4
geotiee — ( ) —6x10°m

0.1

ocean ]‘0_18 VA -3

(Assuming your wrist outputs
0.01W to stir 0.1kg of coffee.)



Two examples of flows that
can never be turbulent
according to the zeroth law.

Horizontal Convection
and
Two-dimensional “turbulence”

If in an experiment on turbulent flow all control parameters are fixed,
except for the viscosity, which is lowered as much as possible, the
enerqgy dissipation per unit mass approaches a nonzero limit.

Turbulence - the Legacy of A.N. Kolmogorov
Uriel Frisch (1996)



Motivation for HC

The ocean is heated and cooled (mostly) at the sea
surface. HC is most idealized situation in which the
implications of this observation can be studied.

Heat In Heat Out

“One of the striking features of the
oceanic circulation is the smallness at
the ocean surface of the regions where

deep and bottom water is formed.”
— Stommel (1962)

Abyssal recipes II:
energetics of tidal and wind mixing

Walter Munk®*, Carl Wunsch®

Without deep mixing, the ocean would turn, within a few thousand years, into a stagnant
pool of cold salty water with equilibrium maintained locally by near-surface mixing and with
very weak convectively driven surface-intensified circulation. (This result follows from Sand-
strom’s theorem for a fluid heated and cooled at the surface.) In this context we revisit the 1966

And the mysterious
Sandstrom Theorem



Paparella & Young, (2002) |FM

Horizontal Convection

Convection driven by heating and cooling at a single horizontal surface

g /
b(y)=H f(¥)

Heat out:
xb.<0

Heat in:

The definition of “buoyancy”:  p = po (1 — g~ 'b(z,1))

Conventional notation: b= ga (T —1Tp)

Note an important difference from RBC:
the zero-flux constraint.



B Ab L3 2D numerical HC solutions. Fluid sinks in the

Ra center. The circulation is weaker and the
v thermocline thinner at higher Rayleigh number.
Density Streamfunction
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At ve ry hlgh Ra the box fills Without deep mixing, the ocean would turn, within a few thousand years, into a stagnant

. . pool of cold salty water with equilibrium maintained locally by near-surface mixing and with
with the densest available very weak convectively driven surface-intensified circulation. (This result follows from Sand-

water. (U nlike RBC ) strom’s theorem for a fluid heated and cooled at the surface.) In this context we revisit the 1966
— Munk & Wunsch (1998)



HC in the laboratory =

(the bottom is non-uniformly heated)

HC “explains” the asymmetry
between sinking and rising
regions in the ocean.

(Unlike RBC.)

The box fills with the lightest
available water. (Unlike RBC.)

The horizontal scale of the

overturning is set by the box.
(Unlike RBC.)

The critical Rayleigh number
is zero. (Unlike RBC.)

Destabilizing
buoyancy input

Stabilizing
buoyancy input

WAYV (8007) ‘SYaio 8 saysnH

N.B. non-uniform buoyancy 4 at the bottom!

Figure 1

Horizontal convection in a thermally equilibrated laboratory experiment subject to heating
and cooling that depends on position along the base of the box (the rate of supply of specific
buoyancy is 1.6 x 107° m?s~? per unit width in the spanwise direction, using a uniform
imposed heat flux at the left-hand end and an imposed boundary temperature of 16°C at the
right-hand end) at a Rayleigh number Rzp = 2.2 x 10'* and Prandtl number Pr ~ 4. Passive
dye tracer is introduced into the bottom boundary layer halfway along the tank to visualize the
circulation. Panel 2 shows the full box, whereas panel 4 is a close-up (approximately one-fourth
the tank length) of the left-hand end, showing an asymmetric clockwise circulation extending
through the depth of the box, with a convective mixed layer embedded in a stably stratified
boundary layer on the base, an entraining plume against the vertical end wall, and eddies in the
horizontal outflow from the plume. Figure 15 taken from Mullarney et al. 2004, courtesy of
Cambridge University Press.



Why are the sinking regions in HC so small?

-
- — F
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.-
Destabilizing Stabilizing
buoyancy input buoyancy input

The short answer: upwards buoyancy flux in the plume
is much more efficient than downwards diffusive
buoyancy in the interior. But these fluxes cancel. Thus
the convective plumes must cover a small area leaving
most of the box for inefficient diffusive downwelling.

“One of the striking features of the
oceanic circulation is the smallness at
the ocean surface of the regions where

deep and bottom water is formed.”
— Stommel (1962)



Now show that HC
cannot satisfy the zeroth
law of turbulence.

If in an experiment on turbulent flow all control parameters are fixedq,
except for the viscosity, which is lowered as much as possible, the
enerqgy dissipation per unit mass approaches a nonzero limit.

Turbulence - the Legacy of A.N. Kolmogorov
Uriel Frisch (1996)



D
—u—i—ﬁ X fu+Vp = bz +vVu,

Dt
The equations of Db _ oy

. . . -~ — K ’

(Boussinesq) fluid motion. D1
V-u=»0.

. (u + momentum equation) = v {(|[Vu|?) = (wb)

Power integrals —
for HC. I
((—z) x buoyancy equation) = (wb) = K b0) _}l[)(_}”
Combine the o b0) = b(=H) _ rAb(0)

power integrals. H -4

— 0 as v — 0 with v/k fixed.

.. HC does not satisfy the zeroth law of turbulence.



Sandstrom’s (1908) “theorem”

“A closed steady circulation can only be maintained if
the heat source is below the closed source.”

b Paparella’s counterexample

There are recent endorsements of the “theorem”: Munk & Wunsch
(1998), Huang (1999), Emmanuel (2001),Wunsch & Ferrari (2004) etc

Without deep mixing, the ocean would turn, within a few thousand years, into a stagnant
pool of cold salty water with equilibrium maintained locally by near-surface mixing and with
very weak convectively driven surface-intensified circulation. (This result follows from Sand-
strom’s theorem for a fluid heated and cooled at the surface.) In this context we revisit the 1966

Also many counterexamples: Jeffreys (1925), Rossby (1965),
Mullarney et al. (2004),Wang & Huang (2005).

So why don’t oceanographers
abandon Sandstrom!?

“HC isn’t a vigorous flow”

“HC produces a thin thermocline
— you need winds, tides and
breaking IGWs to explain deep
ocean stratification”

“Strict interpretation of the
theorem is difficult”
— Houghton (1977)



To turn the “theorem” into a

theorem, and strictly interpret it, E(O) — B(—H)
use this formula V<‘V'Uf|2> = K 7
N —
£

But now the debate

focusses on whether ¢ is
important for ocean

circulation. The majority 302 WUNSCH ® FERRARI
position is at right.
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Exercise (surprisingly easy)

Show that (PV -U) x Kk = r(—2V?D)

U = the exact, non-Boussinesq compressible velocity

P the total pressure

pe +V - (Up)=0

You’ll never doubt the Boussinesq
approximation again.

Thus the HC energy source is given by

9 ¢

Sandstorm’s “piston formula”: conversion of
internal energy to mechanical energy.



But does this look like a laminar flow?

“We suggest that the “zeroth” law is too restrictive,
since according to this strict definition even canonical

Rayleigh-Benard convection would not be turbulent!”
-Scotti & White (201 1)

“Horizontal convection can be interpreted in
terms of a mechanical energy budget, but a

detailed understanding has not emerged”
-Griffiths & Hughes (2007)

“These results explain why the convection
is much stronger than might be inferred
from previous emphasis on minor terms

(the buoyancy flux viscous dissipation

balance and the potential energy budget)”
-Gayen, Griffiths, Hughes and Saenz (2007)

Spiegel suggests that examples such as
these should be called “thermalence”.




The second example of
flows that do not satisfy the
zeroth law is 2D turbulence.

The key feature of 2D turbulence is the
robust conservation of energy,
and the transfer of energy to large scales.

(The inverse energy cascade, negative viscosity, anti-friction etc.)

What would Niagara Falls look like in Flatland?



The singular 3D limit results
from vorticity production

V X p(ut + u-Vu) + Vp = uViu

w; +u-Vw = w-Vu + rViw

vortex
stretching
But in 2D
u = ut +vj w:(vx—uy)fc w-Vu =(

So there is no turbulence in flatland — only flatulence.



The special structure of
2D fluid mechanics

Uy + Uy = 0 = U= —1, V=1,
g:vx—uy:v%

The curl of the momentum equation
produces the 2D vorticity equation:

Ct + wa:Cy — wwa — VVQC



2D Conservation laws

d
Energy: &//%\Vwﬁdxdy: —u/ ¢? dzdy

d
Enstrophy: & // %CQ dazdy — —V/ |VC‘2 d:cdy

Take the limit v—0 and observe that enstrophy is bounded by its
initial value. Therefore energy is conserved in the limit v—0.

According to the zeroth law, there is no turbulence in flatland.
Spiegel suggests that 2D turbulence should instead be called
flatulence.



C — wmx T wyy

mGiven the vorticity at t=0,
calculate the streamfunction
and the velocity: u =k x V¢

mAdvect the vorticity for a time dt.

mCalculate the new streamfunction.

m-Keep in mind that the vorticity

cannot mix down to arbitrarily small
scales: this would violate
conservation of energy.




Consider an ideal fluid so that energy
and enstrophy are both conserved. Then
we can make a very plausible argument
that energy is transferred to large scales.

®.@

%<u2—|—02>:/0 E(k,t)dk

1) = [ REE

E(k,t) = the energy spectrum



The OBF argument

w [ he mean wavenumber of the E(t) B ka(ka t) dk
energy spectrum is: o fE(k, t)dk

[k —k)Ek,t)dk _ [KE(kt)dk o,
[E(k, t) dk [E(k,t)dk

constant

w [ he spectral width is:

t=20

t >0

m|If nonlinear interactions broaden

an initially narrow spectrum, then the
mean wavenumber must decrease.

E(k, 1)




“The net tendency for the bulk of the energy to concentrate in
the small wavenumbers means that fluid elements with similarly
signed vorticity must tend to group together;in no other way is it
possible for the scale of the velocity distribution to increase.We
expect therefore that from the original motion there will gradually
emerge a few strong isolated vortices and that vortices of the
same sign will continue to tend to group together....

Onsager (1949) has arrived at a similar conclusion about the
tendency for a small number of strong isolated vortices to form.”

Batchelor, The Theory of Homogeneous Turbulence (1953)



The Cray supercomputer came

online in 1977 and flatland was
settled by Benzi, Fornberg, -
McWilliams, Santangelo




Briscolini & Santangelo (1991), McWilliams (JFM 1984 &1990)
Benzi, Patarnello & Santangelo (1987)

€ 200
150
g
100
4
- 150
S 0
3
- 45D
Z
100
1 150
200
0
0 1 2 3 4 g G

Ly Yy

A random IC.
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E(k,0) =
> 1+ (k/6)*

m-Emergence of a
“vortex gas’.

m-Merger, straining &
stripping.

m-Energy is conserved
throughout.

m~Nonuniform color
scale to show filaments.

mAt intermediate
times there is a

scaling law
o(t) ~ 7072

m [ he final state
is a dipole.



What did we just see!

it + VeCy — VyCe = —3.125 x 1073V
C — www T 2pyy
Ck

E(k,0) = ¥ (k/6) with (u* 4+ v?) =1

w [ he flow organizes into a dilute vortex gas.

mLike signed vortices merge into
fewer and larger vortices.

m-Mergers jettison filaments into the chaotic
sea of small-scale low-level vorticity.

m-Energy is conserved throughout the evolution.



McWilliams (JFM 1984 &1990)

The vortices of two-dimensional turbulence
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The initial emergence of vortices is
not very well understood. But we can
say something about the statistics of
the emergent vortex gas.

The vortex census indicated that

o(t) = vortices per area ~ t=¢ with §~0.71—-0.75



Evolution of the vortex population

o(t) = vortices per area ~ t~¢ with & ~ 0.71 — 0.75

w Follow Batchelor, and assume that energy 1 | 5
is the only robustly conserved quantity, and £ = 51 V|~ da
! (2w L)? ) °
use dimensional analysis.
L2
. . 1 1
The only dimensionally o and Z o~
consistent ex ' ; Et? t?
pressions are: \
enstrophy

- Or try an analogy with colloidal aggregation:

e N



The miserable failure of “energy
scaling” means there must be other
robustly conserved quantities.

o(t) = vortices per area ~ ¢t~ with & ~ 0.71 — 0.75

VEersus

Et?



(Carnevale, McWilliams, Pomeau, Weiss & Young 1991)

Conservation of extrema
INn vortex cores

There are two conserved quantities: Cext and &
Consequently there is a g def VE and & 1
length and a time: Gext Gext

1 t
Dimensional analysis only tells us that: o(t) = =F | —

What can we do!?




Introduce: a(t) = typical vortex radius

Now consider:

1
£ = 2/%|W|2dw

(27L)
_ ! /2w§dzc
= 27rL /im/iac G(x', x)((x)
~ o(t)Coalt)

(Assume that all of the energy is
due to the vortices.)

Energy is conserved:

ot) ~t™5 = at) ~t**

The circulation of a () ¢ a(t)? ~ /2
typical vortex is:

Vorticity moments are:

<2w1L>2 f¢rae

~ 0 C(?xt az
~ 17E/2

Z, =
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FIG. 1. Vortex data from a turbulence solution (Ref. 6):
the reciprocal of the density of vortices p ~!, the mean absolute
value of vortex circulation I', the mean vortex radius a, and the
mean of the absolute value of the vorticity extrema ¢ are
shown. The solid straight-line segments show the predicted
slopes based on the choice £€=0.75, which is determined from
the data for p~'. The numerical factors for the data are
chosen for display purposes only.

All statistical properties of the vortex gas can
be expressed in terms of the exponent ¢.
These relations agree with DNS.

But there is no way to predict ¢.



As another test, we make a model \

based on “vortex patch” dynamics

A vortex patch moves like a point vortex, except when .

they get too close to another like-signed patch.

| 7 vortex trajectories Trajectories of 17
in 2D turbulence point vortices
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Fig. 3. — a) Trajectories of the centres of the 17 largest vortices (vortex area > 0.01); the plot has been
obtained from the 512 X 512 simulation with the aid of a vortex recognition algorithm. The time
interval plotted is 30+ 40. Thick (thin) lines are used for positive (negative) vortices. Circle sizes are
proportional to vortex radii and segment lengths are proportional to velocities. b) The same as in a) but
for the 17 point vortices, each one having the same total vorticity I'; of the corresponding vortex of the
high-resolution simulation. The plot has been obtained from the solution of egs. (2) starting with the
positions of the centres of the corresponding vortices of fig. 1. Note the striking correspondence of the
trajectories of a) and b).



(Carnevale, McWilliams, Pomeau, Weiss & Young 1991)

The vortex-patch merger rule (,\‘

<

Two circular vortex patche§ Scrit = 165(&1 + CLQ)
merge at the critical separation

The “merged vortex’ has:

Cextl — CextQ — CextS

4 4 4
CL3 — a/]_ _I_ CL2
This rule encodes energy

conservation (on average). The center of the new vortex
is at the mid-point of the line

joining the original vortices.

Merger results in lost vortex area. This is an
irreversible process occurring within the
framework of the reversible system with v=0.



The vortex-patch model

, 10! ¢ — S ———
Move circular top-hat vortex patches, as L At t=0 there are 600 3

though they are point vortices | vortex patches with equal
| radius and 300 of each sign. P 2/
concentrated at the patch center. P

Close binary encounters result in

: . 0.01T
merger into a bigger patch.
/"’ e 2a
10-1 A N i A FUEE T SR | " i A -4 PR S S
10! 10° 10
The crucial ingredient is that fime

energy conservation is encoded

: FIG. 2. Data from the modified point-vortex model. The
into the merger rule.

format is as in Fig. 1. The value of mean vorticity extrema is
not displayed here since it is constant in this model.

Vortex-patch statistics agree with the scaling theory, and
the exponent is close to that of 2D turbulence.






