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Wave–mean flow interactions
Separation between ‘waves’ and mean flows’ in GFD:

I fast waves + slow motion,
I zonal mean + perturbation,
I resolved + unresolved.
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Figure 1
Kinetic energy spectral estimates for instruments on a mooring over the Mid-Atlantic Ridge near 27◦N (Fu
et al. 1982). The inertial, principal lunar semidiurnal M2, and diurnal O1, K1 tidal peaks are marked, along
with the percentage of kinetic energy in them and the kinetic energy lying between f and the highest
frequency estimate. Least-squares power-law fits for periods between 10 and 2 h and for periods lying
between 100 and 1000 h are shown. The approximate percentage of energy of the internal wave band lying
in the inertial peak and the M2 peak is noted. In most records, the peak centered near f is broader and higher
than the one appearing at the M2 frequency. When f is close to the diurnal frequency, it is also close to
one-half the frequency of M2, when the parametric subharmonic instability can operate. Some spectra show
the first overtone, 2 M2 of the semidiurnal tide. Instrument at (a) 128 m, (b) 1500 m, and (c) 3900 m (near the
bottom). The geostrophic eddy band is greatly reduced in energy near the bottom, as is the inertial band,
presumably because of the proximity of steep topography. Note the differing axis scales.

(where σ is the radian frequency, and q is an empirical constant), which we call the geostrophic
eddy range. A conspicuous inertial peak exists at σ ≈ f, where f = 2" sin θ is the Coriolis fre-
quency equal to twice Earth’s rotation period " multiplied by the sine of the latitude, θ , and sepa-
rates the geostrophic eddy band from higher-frequency nongeostrophic motions.2 At frequencies
σ > f, there is another approximate power-law band usually identified as internal waves. A number
of other features, especially tidal lines, appear in most of the records (discussed below). In all

2In this review, as in the oceanographic literature, the term inertial waves refers to those waves in a stratified rotating fluid
with radian frequency σ ≈ f. They should be distinguished from the alternative use in rotating nonstratified fluids as waves
with 0 ≤ σ ≤ f (e.g., Chandrasekhar 1968). Here internal waves denote those motions f ≤ σ ≤ N, which include inertial waves
as a special case. Analogous motions exist in fluids for which N ≤ σ ≤ f, including N = 0, but such conditions are almost
nonexistent in the ocean.
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Ferrari & Wunsch 2009

Zonal-mean atmospheric circulation
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Wave–mean flow interactions

Main interest is for the evolution of the mean flow, but this is
influenced by wave feedback.

Wave-mean flow theories have been developed to:
1. obtain simple governing equations for the mean,
2. include wave feedback terms that can parameterised,
3. track particle motion (e.g. for heat transport),
4. preserve geometric structures (vorticity/potential vorticity

conservation, energy conservation, wave action),
5. be valid in multiple regimes (non-perturbative).

Important: for flows that are balanced (controlled by PV),
3 + 4 = 1

. Lagrangian averaging.
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Wave–mean flow interactions

Eulerian mean flow: does not track particle motion.

Example: zero-mean, time-periodic flow,

u = εU(x, t), ūE = 〈U〉 = 0

Particle position: expanding x(t) = x0 + εx1(t) + ε2x2(t) + · · · ,

εẋ1 + ε2ẋ2 + · · · = εU(x0 + εx1 + · · · , t)
= εU(x0, t) + ε2x1 · ∇U(x0, t) + · · ·

Order by order,

x1(t) = ξ(t) =

∫ t
U(x0, s) ds : periodic displacement,

〈ẋ2(t)〉 = ūS = 〈ξ · ∇U〉 : Stokes drift.
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Wave–mean flow interactions
Generalised Lagrangian mean, GLM Andrews & McIntyre 1978

Average ‘following fluid particles’:
fix particle label a,

x = X(a, t) + ξ(X(a, t)) .

Define the mean flow by

〈ξ〉 = 0 i.e. X(a, t) = 〈x(a, t)〉 .

Lagrangian-mean velocity:

Ẋ(a, t) = uL(X, t) = 〈u(X + ξ(X, t), t)〉 ,

Average equations of motion: see Bühler 2014

I nice mean vorticity equation,
I not-so-nice mean momentum equation.
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Wave-mean flow interactions
Generalised Lagrangian mean

GLM is coordinate dependent: basic definitions make sense
only in Euclidean space,

x = X(a, t) + ξ(X(a, t)) , uL(X, t) = 〈u(X + ξ(X, t), t)〉 , 〈ξ〉 = 0 ,
I cannot add points,
I cannot add vectors at different points on a manifold M

(e.g. sphere),

This is damaging:
I x ∈M but X /∈M,
I ∇ · u = 0 but∇ · uL 6= 0.

Take a geometric approach:
I avoid temptation of coordinate dependence,
I results valid on arbitrary manifolds,
I GLM made easy(?).
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Geometric approach
Notation

I use the flow map φt to avoid confusing maps and points,

x = φta , φ̇ta = u(φta, t) .

I use lowercases, x ∈M, implicit time dependence φ = φt.

Main tools: push-forward, pull-back and
Lie derivative

(φ∗v)i = vj∂jφ
i, φ∗ = (φ−1)∗,

Luv =
d
dt

∣∣∣∣
t=0

(φt)
∗v.

Focus on incompressible perfect fluid:
volume preserving, φ ∈ SDiff(M).

x y

φ

φ

v

φ∗v TφxM

TxM

M
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Geometric approach
Notation

Consider an ensemble of flow maps φ = φα : M→M.
I α = 1, · · · ,N,
I α ∈ [0, 2π], φα(x, t, ε−1t) = Φ(x, t, ε−1(t− α)),
I α, realisation of a flow-map-valued random process.

This defines an average for vectors and other linear objects:

〈vα〉 = N−1
N∑
α=1

vα, 〈vα〉 =

∫
vα dα.

Aim:
1. Define a a mean flow map: φ̄ ∈ SDiff(M),
2. Derive dynamical equations for φ̄.

Start with 2.
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Dynamics

Decompose flow maps into mean and perturbation

φα = ξα ◦ φ̄ .

with ξα an ensemble of perturbation maps. Holm 2000

x

φ̄

φ1

φ2

φ3

ξ1

ξ2

ξ3

M

Decomposition of the maps
at one point x.

φ̄

ξ1

φ1

ξ2

φ2

ξ3

φ3

SDiff(M)

Decomposition of the maps in SDiff.
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Dynamics

Good definition of φ̄:
I requires that ξα remain close to id for t� 1
I needs to be expressed in terms of φα or ξα, not uα.

The mean velocity ū is defined by

˙̄φx = ū(φ̄x) , with ū 6= 〈uα〉.

Chain rule: ξ̇α ◦ (ξα)−1 + ξα∗ ū = uα.

Deduce ξα when φ̄ and hence ū are defined.
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Dynamics
Write Euler equations in ‘the right way’:

∂tu + u · ∇u = −∇p ⇔ ∂tu + u · ∇u +∇(u2/2) = −∇(p− u2/2).

Multiplying by dx: d
dt

(u · dx) = −dπ.

Geometrically, define momentum:
I ν = u · dx in Rn,
I ν = g(u, ·) = u[ on general M with metric g(·, ·).

Momentum is a one-form, dual to vector:

ν(v) =
∑

νivi ∈ R

(ν = νi dxi = gijuj dxi covariant; v = vi∂xi contravariant vector).

Euler equations:

∂tν + Luν = −dπ , div u = 0 .
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Dynamics

∂tν + Luν = −dπ , i.e.,
d
dt

(φ∗ν) = −d (φ∗π) .

Why is this ‘the right way’?
1. Kelvin’s circulation theorem follows at once:∮

φC0

ν =

∮
C0

φ∗ν = const.

2. The form emerges directly from the variational principle

min
φ∈SDiff(M)

∫ T

0
dt
∫

M
g(u,u)ω .

Euler equations: geodesic motion on SDiff(M). Arnold 1966

3. The alternative ∂tu +∇uu = −∇p involves the covariant
derivative∇u.
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Dynamics

Mean dynamics: pull-back Euler equations with ξα, then
average (on mean configuration φ̄M),

〈ξα∗ (∂tν
α + Luανα)〉 = −〈ξα∗dπα〉 ⇔ ∂t〈ξα∗ν〉+Lū〈ξα∗ν〉 = −d(· · · )

Define Lagrangian mean momentum: νL = 〈ξα∗να〉 , then

∂tν
L + Lūν

L = −dπL.

Mean Kelvin theorem follows:

d
dt

∮
φ̄C0

νL = const.

Circulation of the Lagrangian-mean one-form νL along
contours moving with velocity ū is conserved
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Dynamics

Mean flow
Wave-mean flow interaction = relation between ū and νL.

Pseudomomentum: −p = νL − g(ū, ·) .

Closure: model to express p in terms of mean fields, νL. . .
(e.g. linear waves, α-Euler).

Remarks:
I for more complex fluid models, · L = 〈ξα∗·〉 is the natural

averaging for: buoyancy, potential vorticity, magnetic
field. . . ,

I but ū 6= uL.
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Mean flow

Define φ̄: definition of an average
on SDiff(M)

Natural to use:
I group structure,
I Riemannian structure.

Discuss 4 definitions:
1. extended GLM,
2. optimal transport,
3. geodesic,
4. Soward & Roberts’ glm.
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Mean flow
1. Extended GLM

φ̄ = arg min
φ∈Diff(M)

〈
∫

d2(φ, φα)ω〉 .

Best defined in terms of s-dependent vector fields qα such that

ξα = e
∫ 1

0 qαs ds = flow of qαs at s = 1.

φ̄
q1

φ1

q2

φ2

q3

φ3

Diff(M)

I ∂sqαs +∇qαs qαs = 0,
I 〈qαs 〉 = 0 at s = 0

defines the mean
flow.

Perturbatively q = q1 + sq2 + · · · and ξi(x) = xi + ξi
1 + ξi

2 + · · · ,

〈q1〉 = 0 , 〈q2〉 = −∇q1q1 , 〈ξi
1〉 = 0, 〈ξi

2〉 = −1
2Γi

jk〈ξ
j
1ξ

k
1〉.
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Mean flow
2. Optimal transport

φ̄ = arg min
φ∈SDiff(M)

〈
∫

d2(φ, φα)ω〉 .

As GLM, but with incompressibility constraint: φ̄∗ω = ω.

End condition: 〈qαs 〉 = ∇ψ at s = 0 for some ψ. McCann 2001

Peturbatively:

〈q1〉 = 0 , 〈q2〉 = −P〈∇q1q1〉 ,

〈ξi
1〉 = 0, 〈ξi

2〉 = 1
2(I− P)〈ξj

1∂jξ
i
1〉 − 1

2PΓi
jk〈ξ

j
1ξ

k
1〉,

where P projection on divergence-free vector fields.
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Mean flow
3. Geodesic

The Euler equations describe geodesics on SDiff(M) with metric
Arnold 1963

D2(φ, ψ) = inf
γs:[0,1]→SDiff(M)

∫ 1

0

∫
M

g(γ̇s, γ̇s)ω ds, γ0 = φ, γ1 = ψ.

Use this metric to define φ̄ as a Riemannian centre of mass:

φ̄ = arg min
φ∈SDiff(M)

〈D2(φ, φα)〉 .

I ∂sqαs + P∇qαs qαs = 0: Euler equations,
I 〈qαs 〉 = 0 at s = 0, end condition.

Pertubatively: 〈q1〉 = 0 , 〈q2〉 = −P〈∇q1q1〉 , same as optimal
transport to leading order.
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Mean flow
4. glm

Soward & Roberts 2010

Take qαs = qα to be s-independent:

ξα = eqα Lie group exponential,

with
〈qα〉 = 0.

Perturbatively:

〈q1〉 = 0, 〈q2〉 = 0, 〈ξi
1〉 = 0, 〈ξi

2〉 = 1
2〈ξ

j
1∂jξ

i
1〉,

The simplest theory, but
I ‘most’ flows ξα cannot be written as exponentials,
I still usable perturbatively.
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Application
Inertia-gravity-wave–mean flow interactions

Start with 3D rotating, Boussinesq equations,

∂tν
α
a + Luαναa = −dπα + θαdz,

∂tθ
α + Luαθα = 0, div uα = 0,

with ναa = να + f (xdy− ydx)/2.

PV (substance) conservation: Haynes & McIntyre 1990

(∂t + Luα) dναa ∧ dθα = 0

Lagrangian average: (∂t + Lū) dνa
L ∧ dθL

= 0 .
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Application
Wave feedback of inertia-gravity waves

I assume uα = uα1︸︷︷︸
fast waves

+εuα2 + · · · ,

I take 〈·〉 as fast-time average,

I ū is geostrophically balanced: ū = (−ψ̄y, ψ̄x, 0) ,

I mean momentum: ν̄L = −ψ̄y dx + ψ̄x dy + wave terms ,

I mean dynamics is controlled by Lagrangian-mean PV:

∂tq̄L + ∂(ψ̄, q̄L) = 0 ,

q̄L =

(
∇2 +

f 2

N2

)
ψ̄

+ 〈∂(u1, ξ1) + ∂(v1, η1)〉+ f 〈∂(ξ1, η1)〉+ f∇ · 〈ξ1 · ∇ξ1〉/2.
Holmes–Cerfon et al 2011, Xie & V 2015, Wagner & Young 2015, Salmon 2016
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Conclusion

I Revisit Andrews & McIntyre’s GLM using geometric
formulation to

I obtain an incompressible mean flow,
I mean trajectories constrained to M,
I coordinate independence.

I natural definition of Lagrangian mean in terms of
pull-back: τ L = 〈ξ∗τ〉,

I several definitions of the mean flow, O(ε2) apart,
I mean circulation theorem is automatic,
I relation between ū and νL encodes wave-mean flow

interactions,
I geodesic GLM + Taylor closure: Holm’s α-model. Oliver 2017
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