Geostrophic
turbulence




Geostrophic turbulence is 2D turbulence
with additional complications

The 2Dness is justified by rapid rotation.

The beta effect, “zonation" and
“zonostrophic instability”

Non-uniform layer depth due to topography

Stratification, AKA “baroclinicity’” and
baroclinic instability

Coupling to internal gravity waves and other
unbalanced motions.



The beta-plane

vertical

In a thin, stratified
spherical layer only the
local-vertical component
of ) is important.
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The “standard” barotropic model

q: + uq, + vq, = torcing + dissipation
Material conservation u.v) = (— i
q = Vpo + Yy +Py
N——
q

If /=0 we have 2D turbulence.
With non-zero f we can study the cross-over
between waves and turbulence.

The linearized equation,
with no F and D, has (%:a: T %y)t + B, = 0
Rossby wave solutions.



A linear interlude



Rossby VWaves

The dispersion relation
Y = exp li(kx + ly — ot)]
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The dispersion circle
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The group velocity

Cg = (Uk ) Ul)

= — (cos 2a, sin 2a)
K

(k,1) = k(cos a, sin «)

v =08/20
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Very different spatial scales
have the same Rossby wave
frequency.

And the amplitude of the
group velocity is bigger for
longer waves.




A Green’s Function example

. . (Gaw + Gyy), + Gz = d(m)e ™"
Oscillatory forcing

&
exp [—i(wt + g—j)] E
An inspired guess produces Gla,y,t) = Ciw Gz, y) °
the Helmholtz equation... 5\ D
=
&
The solution — one .
must apply the o 3P [_I(QWFW)] H? ()
radiation condition. —lW
Jo — 1Yy
The radius of the N = ﬁ

dispersion circle is: 2w



The far-field wave crests are
parabolas and the phase is

p=—(r+x)

Local wavenumber are

A sanity check

k* + 17 = 27*(1 4 cos ) _ bk v
W
[ sin 6 6 ‘/ 1 2

and tana = — tan —

— — ~ —i'y(r—l—:zr;)—iwt—E
k- 1+ cosb 2 wa 7T’y’re 4

, r
Waves radiated in the direction 8 have the provided o0 > 1
right (= physically intuitive) group velocity W

Note how the different spatial scales in this
mono frequency solution are sorted by the (z,y) =r(cosf, sinh)
direction of the group velocity. 5
N =
2w



The energy density

E = i|VG|]’ ~

But the energy flux is isotropic:

2
Fecp——2"

wiTmr

k? + (2
(Note infinite group velocity
due west of the source.)

‘Cg’ =

|s isotropic radiation obvious?
Hummmm

147

w2 7
(Note zero energy density
due west of the source!)

(€861 sauiyy 3 |660Ap!eH)

xa: + ny + BG e—lwt

The Green’s function radiates isotropically because it contains all
spatial Fourier components with equal weight. If the source of waves
has a limited mix of spatial components, say with a Gaussian forcing
pattern, exp [ —r?/a®—iwqyt], strong anisotropy then occurs. The
familiar argument is that the locus (Figure 8) of possible wave
vectors at a fixed frequency, w,, determines through its normals the
directions of the rays. The far field response is simply the product of
the (perhaps) symmetrical forcing spectrum with this unsymmetrical
locus, or

Y ~G(x, y) e "'°° P(6), Br>1, (3.4)



End of the linear interlude

Go back to the
nonlinear problem

Gt + Y2y — YyCa + P =0
C — %x 2pyy
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Plain old 2D turbulence —

Solution of the IVP

(£10T SIeA)
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The Rhines length

G+ J(, Q) + Biby = vV(

Beta makes no difference to
the conservation laws

Bty = Bt = 0 gy = —me?
So Energy is still robustly conserved. dt 2

But now we have two

d
dimensional parameters. &<%C2> — _V<’VC‘2>

(G261 sauiyy)

of |1 U
U d:f \/§<‘V¢‘2> thines — E

The Rhines length is the emergent scale of the jet spacing.



The Vallis & Maltrud dumbbell
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The Vallis & Maltrud dumbbell

Evolution of the energy spectrum. The initial spectrum is isotropic. The
transfer of energy to large scales is impeded by the beta effect.

k
U\/]f2—|—l2"\-’]€26—_|_l2 = \/k2+l2:\/§|COSOZ|

“Within the dumbbell characteristic Rossby wave
times are shorter than the turbulent turnover times.
This inhibits transfer of energy from the turbulent

regime because efficient forcing of a wavelike
mode will be achieved only when the forcing
frequency is comparable to the natural frequency.”



Now the forced
[-plane problem



(Vallis & Maltrud 1991, 1993)

Forced beta-plane turbulence
(and Ekman drag)

i+ uly + v, + Bv =& — pu + vV
u=-y,, UV =Yy C:(Ifxx+(ljyy

E(x,y,t) = specified forcing

The forcing models smaller scale processes (baroclinic
eddies, convection, baroclinic instability).

A popular (but not universal) assumption is that the
forcing is characterized by its energy injection rate € and
nothing else is important. For example, the length scale
of the forcing is irrelevant — provided it is small enough.



Lilly 1969

The most popular forcing is
“white noise”

0 20 40 50 €0 100 20 14D 180 €T 220

Homogeneous isotropic, spectrally narrow-
band, rapidly decorrelating, small scale etc.

E(z1,y1,t1)E(T2, Y2, t2) = 0(t1 — t2) E(7)

Used by Ted
Shepherd
last week!?

kL = 32

forcing wavenumber
— should be irrelevant?



The zonal average

(average over the “homogeneous direction”)

L

Definition of zonal average anything = 1 / anything dz
0
Quantities with zero (anything), = 0 and £=0
zonal average 5= =0
L
_ 1
The zonal mean flow u(y,t) = ¢ /u(x, y,t) dx
0

Reynolds decomposition Uu=1u-—+1u



(Whitehead, McEwan, Thompson, Plumb and Rhines)

<

The forced strip — momentum is unmixed

u(y,t) ((x,y,1)

10.8

0.6




What did we just see!

Phase
propagation
i

S YAESES

propagation

Group
propagation

u'v' <0

— Locz!llzed\Wave

\'\' \N' gehera%l n)

u'v’ >0

Group
propagation




If pressed, we can substantiate
this scenario in detail...

An amplitude § =€
expansion b = ey + Py + - - -
Forced Rossby waves [at (@i 4 85) + B0, + u (ai 4 5;3)] b =&

at leading order

Now calculate the Reynolds stress and use 00— — 0
g = —0y (

the zonal-mean momentum equation. ulvl)

Instead, let’s examine the eddy
enstrophy power integral.



Deductions from enstrophy
C+ ul, + (8 — tyy) v + V- (u'¢ — /()

The eddy PV equation
= —pu¢’ + vV

The eddy enstrophy (QC )t (6= Byy) 06 (21)( )y

equation —EC— 4l — VN 4 v (%@)
vy

With weak non-linearity B~ EC — M@ —v|[V({']?

>

The ZMF is the difference between enstrophy
production and enstrophy dissipation.
There is westward flow in unforced regions

Recall Taylor’s identity
p = v'(’

= — (u’fv’)y

(' — pu¢”? — vV
s

U =




Prandtl versus Taylor

V'(! = —KrQq, Versus u'v' = —vpl,
2 T— T ~ . /1 /71
But Qy_ﬁ_uyyf\“ﬂ ..UC——/{TB
momentum
The zonal U = ’U’C’ conservation
momentum /liT dy =0
equation is ~ —Kr[

The Taylor PV diffusivity cannot be positive definite — that’s
not good. The Prandtl eddy viscosity does not have this issue.



B ? — pG"? — V‘VC’P * Westward flow in
o e unforced regions

=g

This result is correct, but it’s not the whole story.
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f-plane turbulence driven by
white noise forcing

ﬂ(y,t) C(CE’,y,t)
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What did we just see!

There is an underlying spatially homogeneous
turbulent flow. But this flow is unstable to formation
of jets. The jets initially grow exponentially and then

saturate at finite amplitude.

The mature jets are strong and the turbulence is no
longer homogenous e.g., because of the jet shear.

This is “zonostrophic instability”. It can also be
viewed as “negative viscosity” or “anti-friction”



The zonal-mean momentum equation

Zonally average the QGPV i+ (U'C’)y = —uC+vC,,

eqn, and then integrate.
C — _ﬂy

We have made a great leap backwards
to the momentum equation. Note the
“eddy vortex force”.

Uy = v'¢" — putri,,

The eddy vortex force is related V(I = — (u’v’)y
to the Reynolds stress. (Taylor's identity

If we use an eddy viscosity
closure then,“on average”, the
eddy viscosity is negative.

(W' ay) = p(a?)

(The mean energy equation)

u'v' = —1eu,



An important property of white-noise forcing

Ce + uCy + v¢y + fv =& — u¢ +vV¢

forcing drag

d
The energy 1,2 2\ _ 2 2 2
power integral is (]{ 2 <u T > <¢€> M<u T U > T V<C >
3
Urats = | — is k
White noise forcing RMS — ; 1S KNOWI

specifies energy injection, &.
Drag is required to achieve
statistical steady state. . Lphines =

~1/4

B1/21/4

This is the predicted jet scale.



But this Rhines length is not
the only length scale.

1/4
Rhines —
B4



Halting the inverse cascade

Drag is scale selective — it acts heavily on
the biggest, slowest eddies and halts the
inverse cascade (with and without beta).

WiiZs

( ) 082/3k 5/3
Lilly’s length scale applies to 2D
Uy, = / (K)dk' ~ ePgm13
k/\2

turbulence with £=0.

6961 Al

f can slow down the inverse cascade,
and funnel it into ZM flow. But [
alone cannot halt the cascade. 1Ty ~ 1 = ko~

(I believe.)



2
The “zonostrophy number” def €97
(Z is not standard terminology) ILL5

dime =

LQ\
3

dim 8 =2 = dim(—):LOTO
1

dim p =

~

Three length scales:

1/5 )
b = ()

Sukoriansky, Dikovskaya & Galperin 2007

1/4 Ly 1/4 LRhines 1/20
LRhines = (%) 0 — Tor =4 / and I =7 /
Rhines VM
1/2
Ly = (;—3) }
“Lvm characterizes the intensity of the 5 6
Lring Ly = LRuines

forcing relative to the PV gradient.”



What can we say about the
structure of the zonal jets!?

Motivated by Gas-Giant
atmospheres, there has been
interest in the limiting case

defg2
Z:—5>>1

L4

This case has not much to do
with the atmosphere and ocean.
But I'll briefly discuss it. VWarning:

this is speculative




Strong eddies mix PV
into homogeneous layers.

The PV jumps are mixing
barriers.

Uniform PV produces a
parabolic velocity profile:

o=1py" — L6,

for —l<y</

¢
Note/ ’ljdy — ()
—/

The step thickness is
determined from the
energy power integral

2 04
o P
() =~

=[O,

PV staircases ;<
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A PV staircase!?

def e

= F

_ (LRhines)20
Lym

=32 = 3.5 x 10?

Forcing is via random

injection of vortex
dipoles and is broad-band
in physical space.

7 =11* = 6.7 x 10%°

But this staircase
does not meet the
building code.

X

Note LLﬂ]y =7 1/ 4LRhines > LRhineS

(£107) slI_AAq (Z107) [2Y2s3Q 8 33025 wo.y paidepy



End of forced barotropic
B-plane turbulence

It is very easy to produce zonal jets
— any sort of forcing will do it.

But we there is not a good understanding of
how the jets and eddies depend on the non-
dimensional parameter Z=¢B?/l°.

Is it true that the wavenumber of
the forcing is “irrelevant™?

We can’t say much about this
problem so let’s move on to a more
difficult one...






Baroclinic turbulence

(Some background for Isaac Held’s lectures next week.)



The two-layer
QG model

“Reduced gravity” ¢' = pr_ My
1

ath + wlazQLy _ wlthB — ﬁAQl
Conservation of PV 01 + Vou(oy — Voylos = KAGo — v

in each layer ,
¢ = A1+ a kg(Ye — ¥1) + By
g = Dby + an k(Y1 — 2) + By
The “Rossby deformation 12 fo(Hy + H>)
wavenumber” ‘ g'H1Hy
Layer thickness ratios _ (Hy, H>)
— usually taken as 1/2 (a1, a2) = Hy + H,



The “standard model” of baroclinic turbulence

. . H P1 U
The base state is a vertically v, — —U,y + ¥y, ! * !
sheared zonal flow

H, P2 wp U,

Through thermal-wind balance, the Y
“thermocline” is tilted. The base state has OR*
Available Potential Energy.

_ o
A

\ 7
Ve

thermocline slope

h’T (Ul - UQ) Yy




The linear theory o = —Upy +

@1 = [B+ askg(Un — Uz)] y + Dby + cokg(the — )

A\ - 7

The PVs are 5y ¢
@ = |8+ arki(Us = Ur)] y+ Dty + aokg(r — o)
B2 0
The linearized qit + Urqie + Bivgr =0
equations are qor + Usqoy + Bovg = 0
¢1> (K&l) —iwt+ikx+ily
=1~ ]e
The usual approach (% by

This produces an eigenproblem that can be
solved exactly. Instability requires 3/[32<0.
Let’s consider an supplementary approach.



“Enstrophy power integrals™

() = average over the domain
Define a domain average

The PV fluxes satisfy an identity. (v1g1) = ok (P1a(th2 — ¢1))
Show this is “physically obvious”. (v2g2) = a1k (thae (Y1 — 1b2))
(@1,(12) = ;ﬁll_,l_]_g) — Oél <U1g1> + Ck2 </U2Q2> — O
From the linear equations O (3q7) + Br{viqr) =
we can easily show that O (265) + Pa(vage) =

Use the red ideptity to i ar a1 o] .
get a conservation law. o)+ = (5%)| =

dt | by 52
(pseudomomentum?)



d
The enst.rophy B ERE S FERE
conservation law

For an exponentially an Ot
growing normal mode the ﬁ_<§Q1> + —<%q§> =0
red identity implies 1

A necessary condition for normal . 0
mode instability is that the PV " Pibe <
gradients have opposite signs.

Limit attention to eastward B1 = B+ axki(Uy — Uy) > 0
flow in the top layer By = B+ &1/€§(U1 —Uy) <0



“Non-linearize” around

wn > — ny - wn
the base state

1 = B+ aski(Un — Uz)] y + DAiby + cokg(vha — o)

A\ 4

The PVs are 5 a1
q2 \[5 + o k3 (Us — Ul)l Yy +§¢2 + ki (thy — %Z

B M

The QGPV Gt + Urque + Bron + J (Y1, 1) = kA
equation is ot + Uzqar + PBova + J (2, @2) = KAG2 — pliihs

This is a popular model of homogenous
baroclinic turbulence.

The turbulence is spatially homogeneous
even though the base state depends ony.



Discussion of this baroclinic turbulence model
(Rhines, Salmon, Held, Larichev, Lapeyre, Thompson, Young)

The forcing, U, - U, is more physically realistic than the
The good white-noise agitation used in the barotropic model.
Note that the energy input is not specified in advance.

The turbulence cannot equilibrate by reducing the
The bad vertical shear: U and U; are held fixed.
OTOH, the turbulence does equilibrate!

The equilibration mechanism is not clear. And we can’t

The ugl answer basic questions e.g., how does the energy input
gly q g gy Inp
depend on U, - U;?



tiAu 1)=0.048

EEE— g

CEE—
0 4 2 12 -4 -3 -2 -1 0
Layer Upper-layer PV [g/(BA+)] Lower-layer PV [g/ifA4)]
— lpper  —— Lower
20 A
<
>,
10 A
0 T T T T
-2.5 0.0 2.5 5.0 7.5
x-averaged velocity (uyu X[Aa X fAq
17277 _ . _ _
Lk2u, =28, = 0.04, 2rL =25\, H, = H,

B =B+ 5kl By = B — LK3U,

= -



yiAn

t) (g1 -0 04 L ] O
Layar 1 < 7 10 -6 -4 -2
Upper-layar PV [q.1/(BAs)]

Lower-layer 'V [a/[0A:]

- Upgcer —— Lower

4 10 15 22
x-averaqgzad velacity (uy/U

Xlﬂd

X!Ad

LE2U, = 48, P _004, 2¢L=25\, H =H,
Uikq

br=p+ %kim ,
50

Bo =0 — %kgiUla



PV flux identities

2
Start with the 1 = Cl — 042kd7- :
“inversion relation” 2
def qo = (o + a1 k3T .
T = Y — Yy

With | by P obtain “heat
flux” identities (1T) = (v27) = (VT)

def
V = QU1 + QU9

PV fluxes can be def 5
written in terms of 97 — (X109 kd <U’7’>
the heat flux
) = —a1(Viq1)
(v1q1) = —aki(vT)
(Vaq2) = +ank3{vT) = +Q <UQQQ>



Now use the 1t + Urqiz + Brvn + J (U1, 1) = kKAq
QGPV equations Gt + UsGoy + Bova + J (P2, @2) = KAGo — Ao

619j — CV1KJ<‘VQ1‘2> > ()

Two enstrophy power integrals
(assume [,>0)

F = —ar(viq1) = az(v2qa) 2T = —ahi(|V ") — a2pt(Gae)

The energy power integral (Ur — U2)T = copu(G5)
e= (U —Uy)F +/i<041§12 + 042@2 T Qa(

The heat flux J is the most important summary statistic.

Next week Isaac Held will discuss F 5?
. X Pq
scaling laws for the heat flux.



