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The climate response problem

Lu et al 2008: simulations with GFDL
CM2.1 model, 2081-2100 compared
with 2001-2020 in A2 scenario.

Longitudinal/time average change
depends on physical processes which
fluctuate in longitude and time.

400 |

600

800

1000

200

400}

600 |

800 ¢

1000

100

150

200

250

300 E o e

350

(b) temperature, trend

——— o ——

-50 0 50
(f) tropopause, trend

Les Houches, August 2017




Changes in the SH troposphere as Observatons

(from Thompson and Solomon 2002)

a dynamical response to
stratospheric ozone depletion
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Simple model of solar cycle effects

Haigh et al (2005): response of simple troposphere to imposed

changes, e.g. uniform increase in radiative equilibrium temperature
in stratosphere
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STRATOSPHERE (internal variability, sensitivity to external forcing)

TWO-WAY INTERACTION
MEAN FLOW @ BETWEEN WAVES/EDDIES LARGE-SCALE ROSSBY WAVES

AND MEAN FLOW
DYNAMICS OF MEAN UPWARD AND DOWNWARD
CIRCULATION WAVE PROPAGATION
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TWO-WAY INTERACTION
MEAN FLOW @ BETWEEN WAVES/EDDIES SYNOPTIC-SCALE EDDIES

AND MEAN FLOW

TROPOSPHERE (low—frequency annular variability)
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Simpson et al (2009)

Changes in eddy fluxes are
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Can we make predictions about the response of
the tropospheric circulation?

D_Iagram from Altered Horizontal
Simpson et al (2009) Temperature Gradients

v

Altered Vertical Zonal wind accelerations
Temperature Gradients stratosphere/tropopause

Change in horizontal

eddy momentum flux
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Analogous tropospheric response problems: ozone hole (Gillett and Thompson
2003), stratospheric perturbation (Polvani and Kushner 2002, Song and Robinson
2004), surface friction (Chen et al 2007), tropospheric heating (Butler et al 2010)
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Reduction in surface friction in simple circulation model

(a) U (m/s),0=0.275 (b) U (m/s),c=0.875
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Chen et al (2007): two-stage adjustment (short-time in jet strength
followed by longer term change in jet position)
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Chen et al (2007)

SU"faCG Mean zonal
Friction Wlnd

Structure of
eddles

Eddy
momentum_flux

i )
*
Les Houches, August 2017 CCfCS %%




Questions

« What is relation between spatial pattern of forcing and
the amplitude and spatial pattern of response?
(‘preferred response’, ‘'most effective forcing’)

« Will different models overpredict or underpredict

response (and correct pattern of response) relative to
real atmosphere?

Seek a ‘unified’ approach to quantitative prediction of tropospheric
response, rather than post-hoc explanation of each special case
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Brownian motion

Einstein (1905,19006)
Smoluchowksi (1906)

‘Observable’ Diffusivity of Particle:
D:c — <Vg;2>7_corr

RT
1 2 1
Equipartition of kinetic energy: §’m<Vaj > =3 N_A

Stokes law for viscous drag force: F'g = —kgV = —6muaV’
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dV,,
m— = —ksV, + fr(t)

(fr(t1) fr(t2)) = Co(t: —t2)

(Vi (t1) Vi (t2)) = (V2 exp(—kg|t; — ta|/m) Teorr = M/ ks

RT

D —
ON AT LG

EINSTEIN RELATION

Velocity response to applied force

Time scale of fluctuations  Teorr = m/kS
Applied force

FLUCTUATION -- DISSIPATION

Les Houches, August 2017 CcCfcs @w‘i%k




“Dynamical systems™ approach

Calculation of change in statistical measure of chaotic/random
system due to applied perturbation

P(X)

X

UNDISTURBED SYSTEM DISTURBED SYSTEM
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dX
Evolution equation pr = U(X, 1)

is usually nonlinear and could contain explicit
U(X’ t) randomness

Equilibrium statistical properties described by
probability density function ,O(X

dX
Perturb evolution equation ’ = U(X,t) + AF(X, t)

What is new p(X) ?

[Perturbations to individual trajectories are large — perturbations to
overall statistics are small.]

)
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Consider small applied forcing AF = f(x)d(t)
Atr=0: P(X) = p (%) = p(x) = V. (£(x)p(x))

f_/m/w¢ — y[X(0) = x)p (x)

Compare identity

(X (1)1 (X(0))) =
/ﬁg/@wwwwqﬂzymww:mwwmw

ence (0(X(7))e = (0(X(7) 25 o) an

yy V- (F(x )p(x))
p(x)
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Fluctuation-Dissipation Theorem

For steady x-independent AF

If X is Gaussian then A(X}

Gaussian

/ drC(r)C(0)"".AF =LAF| _ °
0

where C(7) = (X (7)X(0))

Linear operator I, given in terms of properties of undisturbed system

|Crude approximation  A(X) ~ Teorrelation X AF |
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Gritsun and Branstator
(2007)

Application of Gaussian
FDT to predict response
to localised tropical
heating in GCM

Individual AGCM
integrations 40000 days

FDT estimate
constructed from 4M day
integration
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Gritsun and Branstator (2007) Success of FDT measured by pattern
correlation and amplitude ratio.
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SH POP Analysis Forcing and Response Projections
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Ring and Plumb (2008): Gaussian FDT makes incorrect

prediction for response to zonally symmetric thermal (l) and
mechanical (O) forcings
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Practical issues in applying the FDT
L= /o dr C(1)C(0)~

EOFs (which diagonalise C(0)) are a natural choice of
variable (but not the only possible choice)

< C(t) C(0)'> must be estimated from available data.

C(0)" potentially ill-conditioned — number of useful EOFs
may be restricted by length of data series

integration from t= 0 to t= « must be approximated by
finite sum

P
e
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Statistical requirements on application of Gaussian FDT
Cooper and H 2012

2-D linear model
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Study based on simple T21L20 general circulation model
(Cooper and H 2012)

10000 day
simulations, mean
and variance

Forced response
+/- 1 m/s/day

Forced response
+/- 0.1 m/s/day
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Application of the FDT to predict the response to forcing of a
simple T21L20 general circulation model

Response (m/s)

_600 260 460 660 860 1000
Upper limit of integral (days) Run length (days) x 10
(10 x 10° day integrations) (300 day upper limit to integral)
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What is the
optimal number
of EOFs to
include in the
calculation?

(T31L20 model)

Response (ms‘1)

Les Houches, August 2017
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Specification of forcing

oo
Lcaussian = / dTC(T)C(O)_l Where did the equations go?
0

Implications of truncation

e.g. Ring and Plumb (2007)
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Effect of using _o
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Usefulness of Gaussian
FDT may be limited by
non-Gaussianity?

0.015

0.005f

200

pdfs of EOF1 in zonal
wind for T21L20 and
T31L20 simulations
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The non-Gaussian case — a ‘non-parametric FDT
Cooper and H 2011

Estimate using kernel density estimator
method of non-parametric statistics

H(x; h, N) = hdZKX_ &

N . Simplest choice for K(.) is
VX'O(X’ h N) o isotropic Gaussian

Bias and Uncertainty depend on h and N.

Py
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strongly non-Gaussian test

case

Perturbed
and
unperturbed
pdfs
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Application to stochastic Lorenz 1963 model
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Compare with Thuburn (2005) approach of solving Fokker-Planck equation
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0.015

What is a useful measure of 001}
non-Gaussianity?

X OF
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|]‘ )

_LGaussian — /OOO<<X(T)|X(O)>{_p(x)_1vxp(x)|X:X(O) _X(O)C(O)_1}>

Depends on structure of time
correlations as well as form of pdf
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Summary

*FDT potentially provides a quantitative description of
tropospheric response to forcing (e.g. ozone hole, solar cycle,
greenhouse gas increase) given information on statistics of
unforced circulation

*If model low-frequency variability (timescales and patterns) is
wrong then response to forcing will be wrong

*Typical response to forcing will be leading singular vector of
response operator (providing forcing has significant projection
onto leading singular vector), not necessarily the leading EOF.

*In practice can FDT do better than simple estimation of
timescale of leading EOF?

*Applications? Model assessment/intercomparison?
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FDT confusion?

FDT implies that response to forcing will have the same form as
leading EOF? Not necessarily!

dX = BX dt + d¢ (dede) = Qadt

BC(0) + C(0)B” + Q=0 | C(0) dependson Q

Analogy to system of springs — with weakest spring responding
preferentially?

Better to consider mixing in dynamical system — the longest-lived
structure is the one that mixes least rapidly.

Les Houches, August 2017
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Deser et al (2004) —
heuristic approachto  (a) Total Response  Nternal Mode Residual
response problem

Projection

1000mb

INDIRECT
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Future lines of work? (Is the FDT a practical quantitative tool?)

Statistical nature of FDT requires explicit information on/
estimates for bias and uncertainty

*Non-gaussian extension of FDT potentially extends
validity (but there are challenges in implementation — can
we escape the ‘curse of dimensionality’ or avoid it by
working in a truncated system? )

*FDT for truncated system is non-trivial — need to
consider proper ‘effective forcing’ on truncated system.

Clearer practical guide to implementation of FDT (How
long a data record is needed for required precision? How
many degrees of freedom to include?)
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Usefulness of linear theory?

depends on problem being considered — but recall Haigh et al (2005)
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Kidston et al (2015): tropospheric response to stratosphere
on different timescales

a Monthly b Seasonal c Decadal d Centennial

-50 -30 -10 10 30 50 -90 -50 -1010 50 90 -25 -15 -05 05 15 25 =50 -30 -15 10 30 50

SLP anomaly (hPa) Model SLP anomaly (hPa) Model SLP difference (hPa) Model SLP difference (hPa)
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FDT — cultural differences

20" century physics: large systems, small fluctuations, FDT has
been discussed/applied/interpreted in terms of macroscopic
variables.

21t century physics: extension to non-equilibrium small systems
with large fluctuations?

Dynamical systems: Formal derivation/justification of
‘fluctuation-response’ operators, conditions for applicability, can
problems of non-smoothness/non-differentiability be overcome?

Climate/circulation: Evaluation of ‘fluctuation-response’ operator
from model simulation (or from data?) is a problem in statistics
of large-degree-of-freedom systems. How much data is needed
for required accuracy? How can effective dimensionality be most
effectively reduced?
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THE END
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