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Global Climate Models are tuned to enable them to
replicate modern climate dynamical observations

A Global Climate Model Cartoon
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It has remained an issue as to whether such models have skill out
side of the volume of parameter space in which they are tuned



Atmosphere-Land and Ocean- Sea Ice grids

Atmosphere-Land Ocean-Sea Ice
NCAR CESM1

Fast Physics Slow Physics

Control Volume Cubed sphere
atmosphere-land 0.9 x 1.25 degree
res, 0.25 deg latitudinally at the
equator, 26 levels in the atmosphere

Spherical polar orthogonal grid
In rotated co-ordinates, 1 x 1
degree resolution, 60 levels



Do these models have skill under climate
conditions that differ radically from
modern?

A period of Earth history during which a
radically different climate regime prevailed
was during the last glacial cycle
of the Late Quaternary
Ice-Age

60,000 -30,00 years ago



GRIP and NGRIP Summit Greenland Ice Cores:
Relaxation oscillations of the global ocean
circulation?
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Heinrich events (H) correspond to episodes during which
Intense instabilities occur on the eastern flank of the Laurentide ice sheet.
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Outline

Motivation: Past climate tests of climate model veracity—do modern
coupled climate models have any significant skill in explaining
climate dynamical behavior beyond the region of parameter space in
which they have been tuned? The Dansgaard-Oeschger oscillation
as a test

The meridional overturning circulation (MOC) of the oceans and the
nature of the stratified turbulence that is required to support it. The
KH ansatz

The Dansgaard-Oeschger Oscillation: glacial boundary conditions
and solution of the initial value problem for glacial climate time
dependence. A comprehensive model recovers the phenomenon as
a “kicked” salt oscillator in which individual pulses have relaxation
oscillation form

Rapid climate change and D-O physics: the fast timescale of the
relaxation oscillation is governed by the onset of intense
thermohaline convective turbulence which opens a massive Polynya
In the glacial sea ice lid and enables a warming transition which, in
the model, occurs during a single winter season

Summary



The Atlantic THC: Ocean Ventilation & the
Meridional Overturning Circulation (MOC)

Surface Heat, Moisture and Buoyancy Fluxes

Wind HEATING
Stress
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Antarctic Bottom Water Formation North Atlantic Deep Water Formation
Vertical Mixing

Cartoon from Marshall and Speer, Nature Geoscience 2012




The Meridional Overturning Circulation
(MOC) of the Oceans
and the stratified turbulence that supports it

Applicability of the KH Ansatz
for the inference of diapycnal
diffusivity



Parameterizations of these diffusivities are evolving rapidly: We show that the
D-O oscillation process is small scale mixing dependent
and therefor may be invoked to help constrain
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Our interest is in the
guestion of the dependence
of coupled climate model
predictions of the D-O
oscillation upon the
parameterization of the
vertical diapycnal diffusion
of mass

A modern diffusivity
map based upon the
assumption that this
turbulent process is
controlled by
dissipation of the
“Internal tide “

From P & Vettoretti
GRL, 2014



Before considering the characteristics of
the MOC under full glacial conditions and
at high spatial and temporal resolution it is

useful to establish the nature of the
steady states as a function of surface
boundary conditions and the strength of
high latitude freshwater forcing conditions
at low resolution. The following results
were obtained using the CCSM3 version
of the NCAR model.



Modern, Y-D and LGM SurfaceConditions:
Y-D=Younger Dryas; LGM=Last Glacial Maximum

Note: at Y-D onset surface conditions
Were much closer to LGM than to modern



2SVE

MOC Impacts Relative to the Controls: steady
states as a function of anomalous freshwater
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An example of a very high resolution simulation of

a turbulent diapycnal mixing event due to breaking

of a nonlinear Kelvin-Helmholtz wave at Re=6000

and Pr =8. DNS calculation using 60,0000 cores on the
Toronto BGQ system. THE EVOLVING DENSITY FIELD

In the regime of fully developed 3-dimensional turbulent flow From Salehipour
The turbulence acts to support a vertical flux of mass through & P, JFM,

the combined action of buoyancy flux and an additional 2015.

process related to the anisotropy of the turbulence.




Holmboe waves also break at high Re to produce

intense stratified turbulence

Re=4000

P JFM, 2016



Comparing free stratified shear driven turbulent diffusivities
derived from the turbulent collapse of either
Kelvin-Helmholtz or Holmboe waves

Salehipour,
Caulfield & P,
JFM, 2016

FIGURE 11. (Colour online) Variation with Re, for simulation ‘H™ (white circles) and
simulation ‘K™ (grey circles) of: (a) the irreversible mixing efficiency, #, as defined in
(2.27) for the entire life cycle of HWI and KHI; and (b) the irreversible diapycnal
diffusivity, K7, as defined in (2.24) for 7> f3,. The data corresponding to times ,; (marked
by ‘+°), 5, (marked by ‘x’) and t=1,; + 100 (marked by ‘x’) are also indicated. The
direction of time evolution is also indicated by arrows in panel (a).




KH Ansatz fit to stratified ocean turbulence
observations

See Salehipour et al

2016 GRL and

Mashayek, Salehipour

et al GRL 2017

For explicit discussions

of the parameterizations that
 fes are supported by the

Figure 2. Re,, dependence of I, comparing the young and maturs DNS data

mixing ewv rents obtained from oceanic |r|-—._..ur--rr|--||t of Smyth et al.
[2001] (see Moum 5] and .L|'+:|'1 et afl. fo urce of | datal
and an exte f 5 I vith the growth,
turbulent breakdown, and = voltz ins 1'..1|:||I*.:5.-'
(i.e., KH-ansatz) taken from e [—IHI"_ The
histograms on both abscissa :I ordinate illustrate the distribution
of these mixing events in field observations. The DH data sets are

also binned for clarity of presentation.




GRIP and NGRIP Summit Greenland Ice Cores:
Relaxation oscillations of the global ocean
circulation?
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Ice-Age Boundary Conditions:
how do we infer them?



Models of Glaciation History---ICE-6G_C (VM5a)
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NOTE: these figures are from the recent paper by Peltier and Fairbanks
that appeared in the December 2006 issue of QSR (25, 3322-3337). The
new Barbados RSL curve appeared in the Working Group 1 Report of the
IPCC AR4



Origins

R-Peltier
1974
G-Peltier
&Andrew
51976
DPhi/g-
Farrell
and Clark
1976
S-Peltier
et al,
1978
&Clark et
al, 1978

Omega-I,

Peltier,1982

Wu and
Peltier,

1984  C-Peltier Milne & Mit. 1997,
19904 Peltier 1998

Sea Level Equations: With and Without
Rotational Feedback

The Formal Theory of Glacial

Isostatic Adjustment ROTATIONAL FEEDBACK IN THE

SEALEVEL EQUATION
The variation of relative sea level forced by the
glaciation - deglaciation process is determined by
the Sea Level Equation, WithS(8,4,t) the

history of relative sea level, then : Because a change in rotational state is accompanied by a change

in centrifugal potential and because sea level (msl) is constrained
S(0,A,1)=C(6,4,1) [ G(6,2,t)-R(6,A,t) ] to lie on an equipotential, a change in rotational state will clearly

S induce a change in sea level.
=C(9,A,1)[_f;fgjuo,a,1) :

' { ¢(yg,t -t) “T(yt- f)} dOdr + A ‘: (t) ] .. A Modified Sea Level Equation

S(6,4,t)=C(6,4, n[f def fdQ{I (6,250 G (7, 1t))
The history of surface loading L ( 8, 4, t ) may be
expanded as :

Adit) J
I‘(e,‘iyt)=p[l(9?l}t)+pws(9:jﬂt) §

st (0,2, 0) GT (y,t4)} +

And the G lu n Functions ¢ & I" have expansions : i
¢ 8 I Where, to first order in perturbation theory

qb(OZ.l)— E k P (cosy) R 0 2
v ¥ o=y + g Yo Yo (0,4)

]"(9:1()- E h,P,(cosy)
Me 1 Yoo =+5 2 0, Qqa’

And the surface load love numbers k, & h, in turn
: p =.1 o2 175
have expansions : T e £25 a“Vd/5

Py =+ (0 - 0,) (Q2a’/2)/2/15

Py 1= - (@) +i0y) (Qya’f2) V2715

Rot in S, Dahlen 1976 Rot in Geoid,
Data for Rot in S, eg Peltier et al

Peltier 2002 2012



Holocene relative sea level histories
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Northern hemisphere paleotopographies

From Vettoretti
& P GRL,
2013

800 1600 2400 3000 -3200-1600 -800 -400 -200 0 200 400 800 1600 3200
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The vertical turbulent diffusivities of mass
and momentum in the global oceans:
Existing parameterizations



Parameterizations of these diffusivities are evolving rapidly: We show that the
D-O oscillation process is small scale mixing dependent
and therefor may be invoked to help constrain
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Our interest is in the
guestion of the dependence
of coupled climate model
predictions of the D-O
oscillation upon the
parameterization of the
vertical diapycnal diffusion
of mass

A modern diffusivity
map based upon the
assumption that this
turbulent process is
controlled by
dissipation of the
“Internal tide “

From P & Vettoretti
GRL, 2014



Validation of a model of global barotropic tides
against TOPEX-Poseidon satellite altimetry: the
modern tidal regime

M2 Tidal amplitude: DG-Model
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Fig. 10. The global picture of the M, tidal amplitude (top) and phase (bottom) from Left: DG-model with N%43 and Right: TPXO 7.2 dataset on a a grid with about 60 km

resolution in deep ocean and 7.5 km around the global coasts.

A discontinuous Galerkin model: Salehipour, Stuhne and P, Oc Mod, 2012



Simulated tidal amplitude and dissipation
between LGM and Modern

Amplitude (m) Amplitude (m)
05 1 1 : 0.25

60

Longitude (deg) Longitude (deg)

Figure 2. Modeled tidal amplitudes: (a) M,, present-day; (b) M,, LGM; (¢) Ky, present-day; (d) K, LGM.

From Griffiths & P, GRL (2008) and J Climate (2009).



GRIP and NGRIP Summit Greenland Ice Cores:
Relaxation oscillations of the global ocean
circulation?
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Initial conditions for the integration of the NCAR
CESM1 model under glacial boundary conditions

Thermal state of the oceans=modern

Dynamical state of the oceans=at rest

Salinity state of the oceans=+1 psu above modern
Atmospheric trace gases from Vostok, eg pC0O2=200 ppmv
Orbital solar insolation = 21,000 years before present

We explore coupled climate model sensitivity to the

mixing parameterization

« Constant pelagic value

e CCSM3 value

« CESMI1 modern tidal mixing parameterization, a
sensitivity test



The Annual Cycle of Sea Ice Variability Under Both
Modern and Ice-Age Conditions

Pre-Industrial Sea lce Annual Cycle LGM Sea Ice Annual Cycle

Year:0 Month: JAN

Sea Ice Concentration (%) Sea Ice Concentration (%)

a0 AD 50 B0 70 a0 an (4 ]4] 0 0 20 a0 AD 50 B0




First global climate model simulation of the
Dansgaard-Oeschger oscillation: A “kicked” salt
oscillator in the glacial Atlantic Ocean

" [— Pre-Industrial
: — Glacial (ICE 6G A Net TOA balance |

~ From

& P&Vettoretti

r;é GRL, 2014

3

= Kappa=
constant

Top of Atmosphere Radiation Balance ( W/m?)

2000
Time (Years)

Note the somewhat reduced period of the MOC oscillation compared with Summit data



A comparison of the oscillation for two
different choices of diapycnal diffusivity

— Pre-Industrial
Glacial (Background Kappa)
— Glacial (CCSM3/POP1 Kappa)

FromP &
Vettoretti
GRL, 2014
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Conclusion: the strength of the MOC depends strongly on turbulent diapycnal diffusivity



North-south sections through the zonally averaged salinity
field & D-O time series: A “kicked” salt oscillator in the
Atlantic
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Annual Sea Ice — North Atlantic MOC
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The modeled relaxation oscillations fit the polar ice
core inferred SAT data well—but not with tidal
mixing turned on: For the simpler modes we have-

NGRIP Surface Temperature:

Model Elevation: 2753

Observed Elevation: 2917

Model Modern Temperature: -30.0
Observed (2009) Temperature: -31.7

Temperature (° C)

North GRIP Model =~ North GRIP Observed

| | | |
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| AIM: 7 AIM 6 AIM 5

EDML Surface Temperature:
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A 2
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Ice provides the memory of the climate variability associated with the presence of ice




Physical origins of the fast timescale
aspect of the relaxation oscillation: a sub-sea ice
thermohaline instability opens a super-polynya

a)[—_Decadal AMOC PI AMOC )| — Annual Amoc
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From Vettoretti and P, GRL, 2016



Water mass transformation during polynya
formation by convective destabilization of the
water column

Before
transition

Note the
drop in
the COM
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Water column below the polynya
before and after its formation
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The Arctic Component of the Relaxation
Oscillation: Basin Averaged Data

From Vettoretti and P,
J Climate, submitted,
2017.

4200




Water mass properties on a section across
the Denmark Strait into the Irminger Sea

From Vettoretti
and P, J Climate,
2017, submitted




The salinity above the pycnocline increases, the
vertical salinity gradient relaxes and thermohaline
convective turbulence commences

-
]

Sections across the
Denmark Strait Sill
into the Irminger Sea

Deep turbulent
mixing
commences



Summary

The Dansgaard-Oeschger oscillation has been explained
In terms of nonlinear free relaxation oscillation of the
global overturning circulation.

It is sensitive to the detaliled structure of diapycnal
diffusivity

The fact that a modern coupled atmosphere-ocean
climate model is able to explain this phenomenon is a
major success demonstrating robustness well removed

from the parameter space in which the model has been
tuned

Existing models of the variation of kappa throughout the
volume of the ocean destroy the fit to the otherwise
excellent representation of this phenomenon using
conventional and much simpler models of kappa
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